Factoring By Grouping

cpg2000

Factor out all common factors from the trinomial before starting this process.

Case 1 $Ax^2 + Bx + C$ where A > 0 and B > 0 and C > 0.

-		
1.	Multiply A times C. List all the factor pairs of the product.	1. $6x^{2} + 23x + 20$ $6 \cdot 20 = 120$ Factor Pairs 1, 120 2, 60 3, 40 4, 30 5, 24 6, 20 8, 15 10, 12
2.	Look for a pair of factors that add to the coefficient of the middle term, B.	2. 8 + 15 = 23
3.	Rewrite the Bx term using this sum.	3. $6x^2 + 23x + 20 = 6x^2 + 8x + 15x + 20$
4.	Group the first two terms together and the last two terms	4. $(6x^2+8x)+(15x+20)$
	together.	5. $2x(3x+4)+5(3x+4)$
5.	Factor the common factor from each pair	6. $(3x+4)(2x+5)$
6.	Factor out the common binomial	

Case 2 $Ax^2 + Bx + C$ where A > 0 and C > 0, but B < 0.

The pair found in step 2 of the process will both be negative factors.

$$6x^{2} - 23x + 20$$

$$6x^{2} - 8x - 15x + 20$$

$$(6x^{2} - 8x) + (-15x + 20)$$

$$2x(3x - 4) - 5(3x - 4)$$

$$(3x - 4)(2x - 5)$$

Factoring By Grouping

cpg2000

Factor out all common factors from the trinomial before starting this process.

Case 3 $Ax^2 + Bx + C$ where A > 0 and B > 0 and C < 0.

1.	Multiply A times C. List all the factor pairs of the absolute value of the product.	1. $3x^{2} + 10x - 8$ $ 3 \cdot (-8) = 24$ Factor Pairs 1, 24 2, 12 3, 8 4, 6
2.	Look for a pair of factors that have a difference equal to the coefficient of the middle term, B.	2. 12 – 2 = 10
3.	Rewrite the Bx term using this difference.	3. $3x^2 + 10x - 8 = 3x^2 + 12x + -2x - 8$
4.	Group the first two terms together and the last two terms together.	4. $(3x^2 + 12x) + (-2x - 8)$ 5. $3x(x+4) - 2(x+4)$
5.	Factor the common factor from each pair	6. $(x+4)(3x-2)$
6.	Factor out the common binomial factor.	

Case 4 $Ax^2 + Bx + C$ where A > 0 and C < 0 and B < 0.

The pair found in step 2 of the process has the signs reversed.

$$3x^{2}-10x-8$$

$$3x^{2}-12x+2x-8$$

$$(3x^{2}-12x)+(2x-8)$$

$$3x(x-4)+2(x-4)$$

$$(x-4)(3x+2)$$

Case 5: $Ax^2 + Bx + C$ where A < 0

Factor out a -1, then apply one of the previous cases to the trinomial.