CPG 2000

Completing the Square – One method for solving Quadratic Equations

 $3x^2 + 7x - 2 = 0$ $3x^2 + 7x = 2$ $3(x^2 + \frac{7}{3}x) = 2$ $x^{2} + \frac{7}{3}x = \frac{2}{3}$ Think $\left(\frac{1}{2}, \frac{7}{3}\right)^2 = \left(\frac{7}{6}\right)^2 = \frac{49}{36}$ $x^{2} + \frac{7}{3}x + \left(\frac{7}{6}\right)^{2} = \frac{2}{3} + \left(\frac{7}{6}\right)^{2}$ $\left(x+\frac{7}{6}\right)^2 = \frac{2}{3} + \frac{49}{36}$ $\left(x+\frac{7}{6}\right)^2 = \frac{24}{36} + \frac{49}{36}$ $\left(x+\frac{7}{6}\right)^2 = \frac{73}{36}$ $\sqrt{\left(x+\frac{7}{6}\right)^2} = \pm \sqrt{\frac{73}{36}}$ $x + \frac{7}{6} = \pm \sqrt{\frac{73}{36}}$ $x = -\frac{7}{6} \pm \sqrt{\frac{73}{36}}$ $x = -\frac{7}{6} \pm \frac{\sqrt{73}}{6}$

 Move the constant to the right side of the equation. 	$ax^{2} + bx + c = 0$ $ax^{2} + bx = -c$ $a(x^{2} + \frac{b}{x}) = -c$
 Factor out the leading coefficient. 	$a(x^{2} + -x) = -c$ $x^{2} + \frac{b}{a}x = -\frac{c}{a}$
 Divide both sides by the leading coefficient. 	$\frac{a}{Think}\left(\frac{1}{2}\cdot\frac{b}{a}\right)^2$
 Square ½ of the coefficient of x. 	$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$
 Add this value to both sides of the equation. 	$\left[\begin{array}{c} a \\ \left(2a\right) \\ \left(x + \frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \end{array} \right]$
6. Factor the left side as a binomial square	$\begin{pmatrix} 2a \end{pmatrix}^2 = -\frac{c}{a} + \begin{pmatrix} \frac{b^2}{4a^2} \end{pmatrix}$
 Simplify the right side. 	$\left(x + \frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \left(\frac{b^2}{4a^2}\right)$
8. Take the square root of both sides	$\sqrt{\left(x+\frac{b}{2a}\right)^2} = \pm \sqrt{\frac{-4ac+b^2}{4a^2}}$
of the equation. 9. Simplify	$x + \frac{b}{2a} = \pm \frac{\sqrt{-4ac + b^2}}{2a}$
	$x = -\frac{b}{2a} \pm \frac{\sqrt{-4ac+b^2}}{2a}$
10. Solve for x.	$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$