The Box Method for Factoring

Case 1 $Ax^2 + Bx + C$ where A > 0 and B > 0 and C > 0.

1.	Box A.	1. 6 $x^2 + 23x + 20$
2.	Multiply A times C. Drop the box number A and replace C with A x C. List all the factor pairs of the product.	2. $6 \times 20 = 120$ $X^2 + 23x + 120$ Factor Pairs 1, 120 2, 60 3, 40 4, 30 5, 24 6, 20 8, 15 10, 12
2.	Look for a pair of factors that add to the coefficient of the middle term, B.	2. 8 + 15 = 23
3.	Factor the new expression using the pairs of factors found in step (2).	3. $X^2 + 23x + 120 =$ (x + 8) (x + 15)
4.	Divide each factor by the boxed number A.	$4. \left(x + \frac{8}{6}\right) \left(x + \frac{15}{6}\right)$
5.	Reduce the fractions if possible.	5. $\left(x+\frac{4}{3}\right)\left(x+\frac{5}{2}\right)$
6.	Write any remaining denominators in front of x.	6. (3x + 4) (2x + 5)

Case 2 $Ax^2 + Bx + C$ where A > 0 and C > 0, but B < 0.

The pair found in step 2 of the process will both be negative factors.

Case 3 $Ax^2 + Bx + C$ where A > 0 and B > 0 and C < 0.

The larger factor will be positive and the smaller factor will be negative in step (2).

Case 4 $Ax^2 + Bx + C$ where A > 0 and C < 0 and B < 0.

The smaller factor will be positive and the larger factor will be negative in step (2).

```
Case 5: Ax^2 + Bx + C where A < 0
```

Factor out a -1, then apply one of the previous cases to the trinomial.