
College of San Mateo
Official Course Outline

COURSE ID: CIS 255 TITLE: (CS1) Programming Methods: Java C-ID: COMP 122
Units: 4.0 units Hours/Semester: 48.0-54.0 Lecture hours; 48.0-54.0 Lab hours; and 96.0-108.0 Homework
hours
Method of Grading: Grade Option (Letter Grade or Pass/No Pass)
Prerequisite: MATH 120, and CIS 254

1.

COURSE DESIGNATION:
Degree Credit
Transfer credit: CSU; UC
AA/AS Degree Requirements:

CSM - COMPETENCY REQUIREMENTS: C1 Math/Quantitative Reasoning Basic Competency
CSM - GENERAL EDUCATION REQUIREMENTS: E2b. Communication and Analytical Thinking

2.

COURSE DESCRIPTIONS:
Catalog Description:

Object-oriented programming methodology for both computer science majors and computer professionals.
Systematic approach to design, construction, and management of computer programs; emphasizing
program documentation, testing, debugging, maintenance and software reuse. Also includes evolution of
programming languages and emergence of paradigms, UML, virtual machines, exception handling, sorting
and searching algorithms, recursion, inheritance, polymorphism, fundamental graphics, and computer
ethics. This course conforms to the ACM CS1 standards. A materials fee in the amount shown in the
Schedule of Classes is payable upon registration.

3.

STUDENT LEARNING OUTCOME(S) (SLO'S):
Upon successful completion of this course, a student will meet the following outcomes:

Demonstrate knowledge and understanding of programming paradigms and the principal object-oriented
programming concepts.

1.

Design, implement, and use classes, interfaces, and methods, employing standard naming conventions and
advanced features including exception handling, 1/O, GUIs, and event handling.

2.

Employ object-oriented methodology to design and effectively implement medium-sized computer
programs using simple Unified Modeling Language (UML) notation.

3.

Decompose a real-world problem and apply strategies for the reuse of existing components with
inheritance and polymorphism.

4.

Describe the concept of recursion, and implement, test, and debug simple recursive methods.5.
Explain and employ basic sorting and searching algorithms.6.
Use and create standard API documents to understand and document the use of classes and methods.7.
Demonstrate an understanding of professional codes of ethics, such as ACM and IEEE.8.

4.

SPECIFIC INSTRUCTIONAL OBJECTIVES:
Upon successful completion of this course, a student will be able to:

Demonstrate knowledge and understanding of programming paradigms and the principal object-oriented
programming concepts.

1.

Design, implement, and use classes, interfaces, and methods, employing standard naming conventions and
advanced features including exception handling, I/O, GUIs, and event handling.

2.

Employ object-oriented methodology to design and effectively implement medium-sized computer
programs using simple Unified Modeling Language (UML) notation.

3.

Decompose a real-world problem and apply strategies for the reuse of existing components with
inheritance and polymorphism.

4.

Describe the concept of recursion, and implement, test, and debug simple recursive methods.5.
Explain and employ basic sorting and searching algorithms.6.
Use and create standard API documents to understand and document the use of classes and methods.7.
Demonstrate an understanding of professional codes of ethics, such as ACM and IEEE.8.

5.

COURSE CONTENT:
Lecture Content:

Introduction1.
History and evolution of programming languagesA.

6.

History and evolution of programming languagesA.
Procedural languagesB.
Programming paradigmsC.
Compilers and interpretersD.
Object-oriented programmingE.

Object-oriented methodologya.
Object-oriented designb.
Software toolsc.

Machine-level representation of dataF.
Object-Oriented Design2.

Concept of design patternsA.
Use of API'sB.
Modeling toolsC.

UMLa.
Virtual MachinesD.
EncapsulationE.
Structure decompositionF.

Fundamental Data and Data Structures3.
Built-inA.

Primitive data typesa.
Arraysb.
Vectors/ArrayListsc.
Strings/StringBuildersd.
Generic classese.

Variable scope and bindingB.
Abstract Data TypesC.
Wrapper classesD.
Dynamic data structuresE.
Simple text filesF.

Methods and Control Structures4.
Arguments and parametersA.
Return typesB.
Access modifiersC.
Method overloadingD.
Loop control variablesE.

Fundamental Computing Algorithms5.
SortingA.
SearchingB.
Recursive algorithmsC.

Event-Driven Programming6.
Event-handling interfaces/classesA.
Event propagationB.
Exception handlingC.

Fundamental Techniques in Graphics7.
Graphical User InterfacesA.

Swing componentsa.
Graphics and Graphics2D classesB.

Software Engineering Issues8.
ToolsA.
ProcessesB.
Requirements and specificationsC.
Design and testingD.
RefactoringE.

Inheritance9.
Superclasses/subclassesA.
Method overridingB.
Abstract classesC.
InterfacesD.
PolymorphismE.

Dynamic Bindinga.

Computer Ethics10.
Association for Computing Machinery (ACM)A.
IEEEB.

Lab Content:
Students will write weekly short programs (25-175 lines of code) as well as 8-10 projects (200-600
lines of code) using the following:
Basic Program Design1.

MethodsA.
Generic MethodsB.
RecursionC.

Fundamental Data Structures and Data Persistence2.
ArraysA.
Vectors/ArrayListsB.
Strings/StringBuildersC.
EnumerationsD.
Files and File I/OE.

Fundamental Computing Algorithms3.
Sorting and searchingA.
InheritanceB.
Abstract classesC.
InterfacesD.
PolymorphismE.
Dynamic bindingF.

Event-Driven Programming4.
Event-handling interfaces/classesA.
Event propagationB.
Exception handlingC.
Graphical User InterfacesD.
Swing componentsE.
Graphics and Graphics2D classesF.

REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:

Lecture A.
Lab B.
Activity C.
Directed Study D.
Critique E.
Discussion F.
Observation and Demonstration G.
Other (Specify): Lecture will be used to introduce new topics; Teacher will model problem-solving
techniques. Class will solve a problem together, each person contributing a potential "next step". Students
will participate in short in-class projects (in teacher-organized small groups) to ensure that students
experiment with the new topics in realistic problem settings; Teacher will invite questions AND
ANSWERS from students, generating discussion about areas of misunderstanding; Teacher will create and
manage an internet conference for discussion of course topics; and students will work in small groups on
programming assignments.

H.

7.

REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:
Writing Assignments:

The primary writing opportunity for students in this course is documentation supporting their lab and
programming projects. This includes both technical documentation and end-user documentation. The
technical documentation describes the problem to be solved, the scope of the project, an overview of the
solution, and any limitations of the solution. User documentation will be provided to the client of any
reusable code.

Reading Assignments:
Weekly textbook readings.

Other Outside Assignments:
Weekly exercises from the textbook and lab/programming assignments comprise the majority of the

8.

assignments. The lab and programming assignments support learning outcomes. In addition, students will
create several substantial programs consisting of 500-600 lines of code.

REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:

Exams/TestsA.
Group ProjectsB.
HomeworkC.
Lab ActivitiesD.
ProjectsE.
QuizzesF.
Written examinationG.
Bi-weekly quizzes (short answer-from textbook material) to provide feedback to students and teacher;
assessment of student contributions during class discussion and project time; individual programming
assignments; Midterm and Final exams (short answer, general problem solving (similar to in-class work),
short program segments (similar to programming assignments); Assessment of group participation on
course projects, including peer assessment of participation and contribution to the group effort.

H.

9.

REPRESENTATIVE TEXT(S):
Possible textbooks include:

Deitel. Java: How to Program, 11th ed. Pearson, 2017A.
Liang. Introduction to Java Programming and Data Structures, Comprehensive, 11th ed. Pearson, 2017B.
Eck. Introduction to Programming Using Java, 8th ed. http://math.hws.edu/eck/cs124/javanotes8/, 2018C.

10.

Origination Date: November 2020
Curriculum Committee Approval Date: January 2021

Effective Term: Fall 2021
Course Originator: Mounjed Moussalem

