
College of San Mateo
Official Course Outline

COURSE ID: CIS 254 TITLE: Introduction to Object-Oriented Program Design C-ID: COMP 112
Units: 4.0 units Hours/Semester: 48.0-54.0 Lecture hours; 48.0-54.0 Lab hours; and 96.0-108.0 Homework
hours
Method of Grading: Grade Option (Letter Grade or Pass/No Pass)
Recommended Preparation:

Eligibility for MATH 120

1.

COURSE DESIGNATION:
Degree Credit
Transfer credit: CSU; UC
AA/AS Degree Requirements:

CSM - GENERAL EDUCATION REQUIREMENTS: E2b. Communication and Analytical Thinking

2.

COURSE DESCRIPTIONS:
Catalog Description:

Introduction to object-oriented computer programming for computer science majors and computer
professionals. Includes simple data types, control structures, an introduction to array and string data
structures and algorithms, debugging techniques, history of computer science, systems and environments,
and the social implications of computing. Emphasizes object-oriented design, good software engineering
principles and developing fundamental programming skills in a high-level programming language such as
Java, C++ or Python, for example. This course conforms to the ACM CSO standards.

3.

STUDENT LEARNING OUTCOME(S) (SLO'S):
Upon successful completion of this course, a student will meet the following outcomes:

Analyze and explain the behavior of programs involving the fundamental program constructs1.
Write short programs that use the fundamental program constructs including standard conditional and
iterative control structures

2.

Identify and correct syntax and logic errors in short programs3.
Write short programs using arrays4.
Design and implement a class based on attributes and behaviors of objects5.
Construct objects using a class and activate methods on them6.
Use static and instance members of a class properly7.
Identify and describe value, scope and lifetime of a variable.8.
Describe the parameter passing mechanisms and method overloading.9.

4.

SPECIFIC INSTRUCTIONAL OBJECTIVES:
Upon successful completion of this course, a student will be able to:

Analyze and explain the behavior of programs involving the fundamental program constructs1.
Write short programs that use the fundamental program constructs including standard conditional and
iterative control structures

2.

Identify and correct syntax and logic errors in short programs3.
Write short programs that use arrays4.
Design and implement a class based on attributes and behaviors of objects5.
Construct objects using a class and activate methods on them6.
Use static and instance members of a class properly7.
Identify and describe value, scope and lifetime of a variable8.
Describe the parameter passing mechanisms and method overloading9.

5.

COURSE CONTENT:
Lecture Content:

Introduction to the history of computer science and programming languages1.
Ethics and responsibility of computer professionals2.
Introduction to computer environments and language translation

Comparison of interpreters and compilersA.
PortabilityB.

3.

Introduction to object-oriented paradigm
AbstractionA.

4.

6.

AbstractionA.
ObjectsB.
ClassesC.
MethodsD.
Parameter passingE.
EncapsulationF.
InheritanceG.
PolymorphismH.

Fundamental programming constructs
Basic syntax and semantics of a higher-level language

data types and variablesa.
arithmetic and Boolean expressionsb.
assignmentc.

A.

Simple I/O (command line and simple dialog box)B.
Conditional and iterative control structuresC.
Class Types and Object Creation and UsageD.

5.

Fundamental data structure
Primitive typesA.
ArraysB.
Strings and String processingC.

6.

Algorithms and problem-solving
Problem-solving strategiesA.
The role of algorithms in the problem-solving processB.
Implementation strategies for algorithmsC.
Debugging strategiesD.
The concept and properties of algorithmsE.

7.

Lab Content:
Fundamental programming constructs

Basic syntax and semantics of a higher-level language
data types and variablesa.
arithmetic and Boolean expressionsb.
assignment operatorsc.

A.

Simple I/O (command line and simple dialog box)B.
Conditional and iterative control structures
 a. single and double selection
 b. switch statements

C.

Class types and object creation and usageD.
Repetition control structures
 a. while statements
 b. do-while statements
 c. for statements

E.

1.

Fundamental data structures
Primitive typesA.
ArraysB.
Strings and string processingC.

2.

Methods 3.
Instance A.
StaticB.

Algorithms and problem-solving4.
Problem-solving strategiesA.
Algorithm developmentB.
Implementation strategies for algorithmsC.
Debugging strategiesD.

Documentation and APIs5.

REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:

Lecture A.
Lab B.
Activity C.

7.

Discussion D.
Observation and Demonstration E.
Other (Specify): Lectures, to introduce new topics in design and code syntax; Design development
examples, illustrating process and good practice Code development examples on board and live,
illustrating process, problem solving techniques and debug strategy. Class participatory problem solving,
each person contributing a potential "next step"; Short in-class projects and solution presentation; Q/A
sessions where students both ask AND answer the questions; Student groups cooperating to solve
significant programming assignments.

F.

REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:
Writing Assignments:
Textbook exercises and weekly or bi-weekly programming assignments. At least one of the programming
assignments is a small-group project to provide experience in a realistic program development environment.
Specifically, the intent is to provide an opportunity for students to improve their communication skills and learn
to work in a cooperative environment. The primary writing opportunity for students in this course is
documentation supporting their programming projects. This includes both technical documentation targeting a
peer audience, and user documentation targeting those who will be using the software the student develops. The
technical documentation will describe the problem to be solved, the scope of the project, an overview of the
solution, and any limitations of the solution. The user documentation will be primarily instructional. The purpose
of the written assignments is to help students clarify their ideas and then to articulate them clearly.
Reading Assignments:
Weekly textbook reading assignments.

8.

REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:

Class ParticipationA.
Class WorkB.
Exams/TestsC.
Group ProjectsD.
HomeworkE.
Lab ActivitiesF.
Oral PresentationG.
QuizzesH.
Written examinationI.
Quizzes to provide feedback to student and teacher on recently presented material; Assessment of student
contributions during class discussion and laboratory time; Individual programming assignments; Midterm
and Final exams- short answer, general problem solving, short program segments; Assessments of group
participation on course projects, including peer-assessment of participation and contribution to the group
effort.

J.

9.

REPRESENTATIVE TEXT(S):
Possible textbooks include:

Downey, A. and C. Mayfield. Think Java: How to Think Like a Computer Scientist, 2nd ed. ed. O'Reilly
Media, 2020

A.

Murach. Murach's C++ Programming, 1st ed. ed. Murach, 2018B.
B. Hetland. Beginning Python: From Novice to Professional, 3rd ed. ed. Apress, 2017C.

10.

Origination Date: November 2021
Curriculum Committee Approval Date: December 2021

Effective Term: Fall 2022
Course Originator: Mounjed Moussalem

