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INTRODUCTION
PERCENT ERROR AND PERCENT DIFFERENCE

A percent error should be calculated when an experimental value E is compared to a
standard or accepted value S of the same quantity. We express the difference between E
and S as a percent of the standard value S:

PE = ES_SXIOO

1)
This formula yields a positive result if the experimental value is high in comparison to
the standard value, and a negative result if it is low.

A percent difference should be calculated when two experimental values, E; and E,, are
compared to each other, and there is no standard value for comparison. In this case we
express the absolute value of the difference between the experimental values as a percent
of the average of the two values:

—El -E, x 1
(B, +E,)

Percent difference is always positive.

PD = x 200
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THE METHOD OF DIFFERENCES

The Method of Differences is used when some variable is believed to change by equal
amounts in successive measurements. This method yields the average change in the
variable per interval.

A physical example of such a case is the stretching of a spring by a force which increases
by equal amounts in successive intervals. Another example is the speed of a dense
falling body measured at equal time intervals.

As a concrete example to illustrate the Method of Differences, suppose that we want to
measure the width of one of a number of identical floor tiles in a room.

One method is to place a measuring rod down, measure a tile, move the rod, measure
another tile, and so on. We could then find the average of the individual measurements.
However, moving the rod increases the experimental error.

A more precise method is to place the rod down only once, and then to take a set of
readings of the positions of successive cracks (assumed to be of negligible thickness).
For example, six successive readings would span five tiles. Let the six readings be a, b,
c,d, eand f.

There are several ways in which these six numbers could be combined in order to yield a
single tile width.
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A poor method would be to use the formula
_f-a
S 3)

The result would be approximately correct, but less precise than it could be, since we
have used only two of the six readings.

\%%

A method that looks better at first is to calculate the five widths, b-a, c-b, d-c, e-d, and
f-e, and then average them. The equation for this procedure is
(b-a)+(c-b)+(d-c)+(e—d)+(f—e)
5 (4)

Close inspection of this equation, however, shows that it reduces to equation (3), so we
have gained nothing by all of our extra work.

The Method of Differences uses each of the six readings once, and no reading cancels
out. In order to use it, we must have an even number of readings. For an odd number of
readings, either the first or last reading must be discarded. Then, we divide the readings
into two sets. In our example, set one would consist of readings a, b and c; set two would
consist of readings d, e and f. We can get one estimate of the average by using readings
a and d,

d-a
—3 .

Here, the distance (d-a) spans three tiles, so we have divided by three. We can get two
other estimates using the pairs b and e and c and f,

The method of differences uses the average of these three estimates

SIS g ®

W = =
3 3?
In the general case, suppose that we have 2n successive readings, A; to A, and B, to By,
of some variable S. Then the average change in S per interval is given by
(Bl _Al)+(B2 _A2)+.“+(Bn _An)

AS = 02 (6)
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UNCERTAINTY IN DATA AND CALCULATIONS
I. Limitations on Precision of Measurement

No measurement is exact. The precision of a measurement is limited by the nature of the
measuring instrument itself, by the conditions of measurement, and by the skill of the
person using the instrument.

For example, the precision of our measurement of the length of a board, using a meter
stick, is limited by the fact that the smallest division on the stick is a millimeter. We can
estimate the length of the board to a precision of the nearest fifth or tenth of a millimeter
by mentally dividing the millimeter into smaller divisions, but soon we reach a limit.
Even if we were to use a magnifying glass in an effort to divide the millimeter into even
smaller parts, we would eventually be limited by irregularities in the markings on the
meter stick.

A common source of error in using a meter stick is parallax error. This is error caused by
the line of sight not being precisely perpendicular to the stick. For example, measuring
the length of a sheet of paper by placing the stick down flat on the paper easily leads to
parallax error; it would be better to place the meter stick on edge so that the markings
touch the paper.

Parallax error can occur in many situations; it occurs, for example, in reading an
electrical meter when the pointer moves in a different plane from the scale.

I1. Absolute and Relative Uncertainty

Suppose that we measure the length of a piece of paper as 20.00 cm, by using a meter
stick. Then, after considering the process of measurement, we decide that we might be in
error by as much as 0.02 cm (one-fifth of the smallest division of the stick). We usually
express this by saying that the length is 20.00 = 0.02 cm.

In this case, 0.02 cm would be the absolute uncertainty in the measurement or the
possible absolute error in the measurement.

We define the relative uncertainty in a measurement or the possible relative error in a
measurement to be the ratio of the absolute uncertainty to the actual measurement; for
our example, 0.02 cm/20.00 cm = 0.001 = 0.1 %.

Note that the absolute uncertainty has the same units as the measurement; whereas the
relative uncertainty is unitless and is often expressed as a percent.

Uncertainty and possible error are synonyms. Uncertainty is more often associated with
measurements. Possible error is more often associated with results calculated from
measurements.
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Use of Differentials to Represent Uncertainties

Let the length of the paper in section II be called L. Then we represent the absolute
uncertainty in L by the symbol dL. We represent the relative uncertainty in L by the ratio
dL/L.

Since relative uncertainties are usually rather small, the concept of a differential is useful
in determining how two or more uncertainties combine together when measurements are
used in mathematical operations. This will be illustrated in the next section.

. How Uncertainties in Data Affect Calculated Results

Consider a formula F(A) evaluated for one measured quantity A which has an
uncertainty dA. If dA is small, F(A £ dA) = F(A) £ (<& ) dA, where <& is the derivative

of the formula with respect to A evaluated at the measured value of A. Note: This
formula is simply the first two terms of the Taylor Expansion of F at A. The uncertainty

in the calculated value for F is then dF = | | dA. This same relation can be used for a

formula F, if A is a calculated quantity.

Example: Let F(A)= VA and A be measured as 3.54 m? + 0.07 m?.

vV3.54m? =1.88m
@ _ ] =1 =1/(2X1.88 m)=0.266 m”’
A\/K A\/3.54m2 ( )

dF = [&£] dA =0.266 m" X 0.07 m*=0.0186 m = 0.02 m

F=188m=*0.02m

Now, consider a formula F(A, B, C) evaluated for the independent quantities A, B and C
which have uncertainties dA, dB and dC, respectively. If dA, dB and dC are small,
F(A+dA,B+dB,C+dC)=F(A,B,C)+ (&) dA £ (%) dB £ (&) dC, where the

0A
derivatives are evaluated at the measured values of A, B and C. The uncertainty in the

calculated value for F is then dF = |& | dB + || dC.

Let us now consider the most frequent operations we will perform in calculations:
addition, subtraction, multiplication, division, and raising to a power.

A. Addition

Let S be the sum of two independent” quantities, S = A + B.
B =1and & = 1. Therefore, dS = dA + dB.

Example: (25.0cm+0.2 cm) +(10.0 cm £ 0.5 cm) =35.0 cm £ 0.7 cm

"For calculations involving dependent quantities, refer to section IV-F.
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B. Subtraction

Let D be the difference of two independent quantities, D = A - B.
D =1 and 2 =-1. Therefore, dD = dA + dB.

0A

Example: (25.0cm £ 0.2 cm) - (10.0cm = 0.5cm)=15.0cm 0.7 cm
C. Multiplication

Let P be the product of two independent quantities, P = AB.
& =Band & = A. Therefore, dP = [B|dA + |A|dB.
Dividing both sides by |P| = |A| |B|, we find dP/|P| = dA/|A| + dB/|B].

Example: (5.00 m £ 1%)(8.00 m + 3%) =40.0 m* £ 4% =40.0 m* + 1.6 m?
(1.6 m? is obtained by calculating 4% of 40.0 m?.)

D. Division
Let Q be the quotient of two independent quantities, Q = A/B.
£ =1/Band 3 =-A/B Therefore, dQ =|1/B| dA + |A/B?| dB.
Multiplying both sides by 1/|Q| = [B|/|A|, we find dQ/|Q| = dA/|A| + dB/|B|.
Example: (3.00 g £ 1%)/(1.50 cm?® £ 3%)=2.00 g/cm?® 4% = 2.00 g/cm?® + 0.08 g/cm?

Note: The general rule for addition and subtraction is that the absolute uncertainty in a
sum or difference is equal to the sum of the absolute uncertainties in the quantities added.
The general rule for multiplication and division is that the relative uncertainty in a
product or quotient is equal to the sum of the relative uncertainties in the factors.

Simply put: IfF=A +B,dF=dA +dB.
If G=A x B or G=A/B, then dG/|G| = dA/|A| + dB/|B|.

E. Expressions Containing Only Powers, Multiplications and Divisions

Since powers are simply repeated multiplication, we have, in effect only
multiplications and divisions. From the results of parts C and D, we see that we can
simply sum the relative errors.

For example, if A = B°CY/D’, then dA/|A| =p dB/|B| + qdC/|C| +r dD/|D|

The density of a cone is p = m_ Lz , where m is the mass, r is the radius, and h
V izrh

is the height. The relative uncertainty in the density is dp/p = dm/m + 2 dr/r + dh/h,

where dm, dr and dh are the absolute uncertainties in the mass, radius and height

respectively.
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'F. Expressions containing dependent quantities.

One must be careful to only apply the rules above to expressions containing
independent quantities or else errors can be double or triple counted. Two quantities
calculated from the same measurement are dependent, as are a measured quantity and
a value calculated from it.

One simple geometric example of the latter case is the calculation of the difference
between the circumference and diameter of a circle. Consider a circle with a
diameter measured to be 10.0 cm £ 0.2 cm (10.0 cm £ 2 %). Its circumference is C =
nd. Since & is a constant, its relative uncertainty is zero and the circumference will
have the same relative uncertainty as the diameter, 2 %. The resultis C=31.4 cm *
0.6 cm. Using the rules above, we would find C —d=21.4 cm £+ 0.8 cm. The
uncertainty in the difference is actually less than 0.8 cm. To calculate the actual
value we must put together the two formulas above, C —d =nd —d = (n-1)d. Since
(m-1) is a constant, its relative uncertainty is zero and the difference will have the
same relative uncertainty as the diameter, 2 %. Thus, C —d=21.4 cm £+ 0.4 cm.

An example of the first case would be the ratio of the volume of a sphere to its
surface area. Consider a sphere with a diameter measured to be 10.0 cm £ 0.2 cm
(10.0 cm £ 2 %). The surface area of the sphere is A = nd®. Since 7 is a constant, its
relative uncertainty is zero and the surface area will have twice the relative
uncertainty of the diameter, 4 %. The resultis A =314 cm =4 %. The volume of
the sphere is V = 1/6 nd’. Since /6 is a constant, its relative uncertainty is zero and
the volume will have three times the relative uncertainty of the diameter, 6 %. The
result is V =524 cm £ 6 %. Using the rules above, we would find V/A = 1.66 cm *
10 %. The relative uncertainty in the ratio is actually less than 10 %. To calculate
the actual value we must put together the formulas above, V/A = (1/6 nd’)/( nd?) =
d/6. Since 6 is a constant, its relative uncertainty is zero and the ratio will have the
same relative uncertainty as the diameter, 2 %. Thus, V/A =1.66 cm + 2 %.

As shown in the two examples, when an expression contains dependent quantities, it
is necessary to algebraically simplify the expression before calculating the relative
uncertainty.

G. Complex Expressions

Complex expressions may be handled by repeated use of the previous results or by
the method outlined at the beginning of this section (section IV).

2

Example: Let A = DBC

where B =50.0 £ 0.5 ﬁ C=10.0£0.2kg,
D=100+1m, E=3.00+0.06 m, and F = 50.0 + 1.0 m?.

Solution I:
oA  C° (10.0kg)’

== = = 0.400
OB DE-F (100m)3.00m)-(50.0m?) m
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oA 2BC 2(50.0.2" f10.0kg)
oC DE-F (100m)3.00m)—(50.0m")

oan  -EBC:  —(3.00m)50.0.2 J10.0kg)’

=4.00%

OA _ _ =0.240¢
oD (DE-F)' ((100m)3.00m)-(50.0m )} S
oa_ -ppct _ ~(100mks0.0 2 fi0.0ke) 8.00%
OE  (DE-F) ((100m)(3.00m ~(50. Omz))z R

0 10.0kg)
on__ B loopifookef ~0.0800-2.

OF (DE-F) ((100m)3.00m) (50 om?))
dA =2

0A

oF

0A

oC

0A

oD

dA = (0.400%)(0.5 {5 ) + (4.002)(0.2 kg) + (0.240%2 )(1 m)

+(8.00)(0.06 m) +(0.0800 % )(1.0 m?)

dA =18 =2

BC? (50.0 22, J10.0kg)’
"DE-F (100m)3.00m)—(50.0m?)

=20.0 “f;“ +1.8 kf;ﬂ

Solution Il (repeated use of earlier results):
BC? [50.0£0.5.2, J10.0+ 0.2kg)
" DE-F (100+1m)3.00+0.06m)—(50.0+1.0m?)

[50.0 2% £1%10.0kg + 2%)°

A =
(100m +1%)3.00m + 2%)—(50.0+1.0m? )

I-7

[50.0 2% 1% J10.0kg = 2% (50.0.2 £1%)10.0kg+ 2%

kgs

A=

[50.0 2 £1%J10.0kg £ 2%)" 500, £1%10.0kg+ 2%

@som>+10m?) (250m> +4%)

A =20.0224+9%=20.02"+1.82~

(300m?> £3%)—(50.0£1.0m*) ~ (300m” £9.0m?)-(50.0+1.0m”)
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SIGNIFICANT FIGURES AND DECIMAL PLACES

Often, we wish to quickly estimate the precision of our calculated results without applying
the rigor of the previous section. To do this, we use rules that relate the number of decimal
places or significant figures we can keep in a calculated value to the number of decimal
places or significant figures in our data.

|. Definitions

The number of decimal places in a number is the number of digits to the right of the
decimal point.

The number of significant figures in a number is the total number of digits, exclusive of
leading zeros.

I1. Examples

The following table shows the number of decimal places and the number of significant
figures in five numbers.

Number | Number of Decimal Places | Number of Significant Figures
15.73 2 4
0.0072 4 2
200.6 1 4
1.2700 4 5
4300 0 2,30r4

The ambiguity in the number of significant figures in the last example is easily removed
by using scientific notation. 4.30 x 10” is three significant figures.

Rules for Rounding Off Calculated Results

In addition or subtraction, keep as many decimal places in the result as the smallest
number of decimal places found in any of the numbers being added or subtracted.

Examples:  20.5+1.483=22.0
19.03 - 18.96 = 0.07
10.512-9.8=0.7
493 +626=11.19

Notice that the number of significant figures in the result can be more than the number of
significant figures in either number or less than the number of significant figures in either
number.

In multiplication or division, keep as many significant figures as the smallest number of
significant figures found in any of the numbers being multiplied or divided.
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Examples:  38.75(49.186)/1.48 = 1.29X 10° or 1290, but NOT 1287.81.
(1.237)(43.9)*= (1.237) (43.9) (43.9) =2380 or 2.38 X 10°

The reasonableness of these rules may be established by using the methods discussed in
the previous section.

THE METHOD OF LEAST SQUARES

When two variables, x and y, are known or believed to have a linear relationship to each
other, the constants m and b of the equation y = mx+b may be obtained from the
experimental data by plotting a graph. The constants are, respectively, the slope and Y
intercept of the graph.

Subjective judgment is required in drawing the line that best fits the experimental data, if
the points are somewhat scattered. The Method of Least Squares allows the calculation
of the slope and intercept for the least-squares line. The least-squares line is the line that
minimizes the sum of the square of the vertical distance of each data point from the line.

Let us say that we have n data points: (X1, y1), (X2, ¥2), ..., (Xn, Yn). The diagram on the
following page shows the line we are seeking, along with one typical data point Pi with
coordinates (xi, yi). Let Pi' be an associated point on the line, having the same x
coordinate x;. Since Pi' lies on the line y =mx+b, its y coordinate is mx; +b. Let

Ay; be the distance between these two points. Let S be the sum of the squares of all such

distances. This is the sum that we will minimize.

The distance Ay, is given by the difference in y coordinates of the points Pi and Pi'.
Thus we have

Ay, = y; —(mx; +b)=y; —mx, ~b.



260 I-10

The sum S is then given by

(Ay,) : (y, —mx, —b)

1 i

S

I
™M=

>

(yi2 + mzxi2 +b? —2mx;y; _2byi +2min)

i=1

ZZX +nb2—2m2x Y, — Zbe, +2mb2x

I
M:

I
—_

S is a function of two independent variables m and b, and 2n constants, Xi, yi, ..., Xn, Yn.
In such a case we can find a relative minimum (there is no relative maximum) by setting

both partial derivatives to zero.

———ZmZx —ZZX Y, +2b2x
i=1
ozﬁzznb_ziyi +2mzn:xi
i=1 i=l

ob
Solving these equations simultaneously, we find

RN DR RINRT

= gpd h=A = ;
R

The following is a numerical example, using the four data points (1.51, 2.73), (2.87,
6.07),(9.47, 12.37), and (12.73, 13.61).

i X; Yi XiYi Xi

1 1.51 2.73 4.1223 2.2801
2 2.87 6.07 17.4209 8.2369
3 9.47 12.37 117.1439 89.6809
4 12.73 13.61 173.2553162.0529
Sum | 26.58 3478 311.9424262.2508

E3

Sum | 26.58  34.78 312 262.3

The last row shows the sums to the correct number of significant figures. It should be
noted that the number of significant figures in each sum increases when more data points
are present. If there were three times as many data points, the sum of the y-coordinates
would increase by about a factor of 3. This would result in a sum that would exceed 100,
but would still be accurate to the nearest 0.01. The sum would have 5 significant figures.

2

Substituting the sums into the equations for m and b, and remembering that n is four in
this case, we obtain



260

I-11

_ 4x312-26.58x34.78 1.25x10°-924.5 3.2x10’
4x262.3-(26.58)’ 1049 - 706.5 343

=0.94, and

b 34.78x262.3-312x26.58 _ 9123-8.29x10° _83x10° _

= 2.4,
4x262.3—(26.58) 1049 —706.5 343

Our equation for the least-squares line is then, y =0.94x+2.4.

The X intercept, if needed, may be calculated from
X, :__b:ﬁ:_z_ﬁ
m  0.94

WARNING: The equations for m and b in the least-squares method tend to give zero
divided by zero. In order to obtain meaningful results, one needs to have many data
points.

MICROSOFT EXCEL NOTE: The slope and intercept of the least-squares line can be
found in Excel using the SLOPE and INTERCEPT functions. One must be aware of
significant figures when using these functions, since Excel does not take them into
consideration. The syntax for the two functions is

SLOPE(known_y's,known_x's)
INTERCEPT(known_y's,known_x's)
Known_y's is the dependent set of observations or data.

Known_x's is the independent set of observations or data.

MODIFIED LEAST SQUARES

In some cases, we will encounter a relation that is not only linear, but a direct proportion.
If x and y are related by a direct proportion, then y =mx+b with b=0.

With this constraint, the sum S is given by
S= Zn:(AYi )2 = Zn:(yi —mx; )2 = Zn: yi2 + mzznlxiz _2mZ”: X Yi
i=1 i=1 i=1 i=1 i=l

For this case, the sum S depends on only one unknown, m. We can find the value of m
that makes S minimum by setting the derivative of S with respect to m equal to 0.
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Since there are no subtractions in this formula, one does not tend to get zero divided by
zero with the Modified Least Squares.

MICROSOFT EXCEL NOTE: Microsoft’s Excel program also contains a built in
function that will evaluate this formula, LINEST. The syntax is

LINEST(known_y's,known_x's,FALSE)
Known_y's is the dependent set of observations or data.
Known_x's is the independent set of observations or data.

LINEST will also return an array containing m and b for the regular Least Squares line.
This can be done by replacing the “FALSE” with “TRUE”. LINEST can also be used to

obtain regression statistics.

RESISTOR COLOR CODES

The nominal resistance of a resistor is specified by the colors of three bands printed on
the resistor. If present, a fourth band indicates the tolerance and a fifth band gives a
reliability rating. When only three bands are present the tolerance is understood to be
+ 20 %.

Band 1 is the band nearest an end of the resistor.

Bands 1 and 2 specify the first two digits of the resistance, A and B, respectively. Band
3 specifies the exponent C in the formula R = ABX 10°. A, B and C have integer values
found in the table below. Note that A and B are not multiplied, but are the digits of a two
digit number with A in the tens place and B in the units place (see examples below).

Color

silver | gold

black

brown

red

orange

yellow

green | blue

violet

grey

white

Band 1
or2

0

1

2

3

4

5 6

7

8

9

Band 3

-2 -1

0

1

2

3

4

5 6

7

8

9

Band 4

10% | 5%

1 %

2%

0.5% 1 0.25%

0.1 %

0.05%

Examples:

Band 1

Band 2

Band 3

Band 4

Tolerance Resistance

brown

black

brown

silver

10 % 100 Q2 £ 10 %

red

red

orange

20 % 22 kQ +£20 %

violet

yellow

gold

gold

_[ [N = >

Alv|o|w

C
1
3
-1

74Q+5%

Note: Most resistors with a tolerance of 2% or less have four bands that specify the
nominal value. We will not encounter these in this class.
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