
 
210  I-1 
 

INTRODUCTION 
 
PERCENT ERROR AND PERCENT DIFFERENCE 
 

A percent error should be calculated when an experimental value E is compared to a 
standard or accepted value S of the same quantity.  We express the difference between E 
and S as a percent of the standard value S:  
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(1)
This formula yields a positive result if the experimental value is high in comparison to 
the standard value, and a negative result if it is low. 

A percent difference should be calculated when two experimental values, E1 and E2, are 
compared to each other, and there is no standard value for comparison.  In this case we 
express the absolute value of the difference between the experimental values as a percent 
of the average of the two values:  
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Percent difference is always positive. 

 

THE METHOD OF DIFFERENCES 
 
The Method of Differences is used when some variable is believed to change by equal 
amounts in successive measurements.  This method yields the average change in the 
variable per interval. 

A physical example of such a case is the stretching of a spring by a force which increases 
by equal amounts in successive intervals.  Another example is the speed of a dense 
falling body measured at equal time intervals. 

As a concrete example to illustrate the Method of Differences, suppose that we want to 
measure the width of one of a number of identical floor tiles in a room.   

One method is to place a measuring rod down, measure a tile, move the rod, measure 
another tile, and so on.  We could then find the average of the individual measurements.  
However, moving the rod increases the experimental error. 

A more precise method is to place the rod down only once, and then to take a set of 
readings of the positions of successive cracks (assumed to be of negligible thickness).  
For example, six successive readings would span five tiles.  Let the six readings be a, b, 
c, d, e and f.  

There are several ways in which these six numbers could be combined in order to yield a 
single tile width.  
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A poor method would be to use the formula 

5
a-fw =  

 

(3)
The result would be approximately correct, but less precise than it could be, since we 
have used only two of the six readings. 

A method that looks better at first is to calculate the five widths, b-a, c-b, d-c, e-d, and  
f-e, and then average them.  The equation for this procedure is 
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(4)
Close inspection of this equation, however, shows that it reduces to equation (3), so we 
have gained nothing by all of our extra work. 

The Method of Differences uses each of the six readings once, and no reading cancels 
out.  In order to use it, we must have an even number of readings.  For an odd number of 
readings, either the first or last reading must be discarded.  Then, we divide the readings 
into two sets.  In our example, set one would consist of readings a, b and c; set two would 
consist of readings d, e and f.  We can get one estimate of the average by using readings 
a and d, 

3
a-d
. 

 

Here, the distance (d-a) spans three tiles, so we have divided by three.  We can get two 
other estimates using the pairs b and e and c and f,  

3
b-e
 and 

3
c-f
. 

 

The method of differences uses the average of these three estimates 
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In the general case, suppose that we have 2n successive readings, A1 to An and B1 to Bn, 
of some variable S.  Then the average change in S per interval is given by 
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UNCERTAINTY IN DATA AND CALCULATIONS 
 

I. Limitations on Precision of Measurement 
 
No measurement is exact.  The precision of a measurement is limited by the nature of the 
measuring instrument itself, by the conditions of measurement, and by the skill of the 
person using the instrument. 
 
For example, the precision of our measurement of the length of a board, using a meter 
stick, is limited by the fact that the smallest division on the stick is a millimeter.  We can 
estimate the length of the board to a precision of the nearest fifth or tenth of a millimeter 
by mentally dividing the millimeter into smaller divisions, but soon we reach a limit.  
Even if we were to use a magnifying glass in an effort to divide the millimeter into even 
smaller parts, we would eventually be limited by irregularities in the markings on the 
meter stick. 
 
A common source of error in using a meter stick is parallax error.  This is error caused by 
the line of sight not being precisely perpendicular to the stick.  For example, measuring 
the length of a sheet of paper by placing the stick down flat on the paper easily leads to 
parallax error; it would be better to place the meter stick on edge so that the markings 
touch the paper. 
 
Parallax error can occur in many situations; it occurs, for example, in reading an 
electrical meter when the pointer moves in a different plane from the scale. 

 
II. Absolute and Relative Uncertainty 

 
Suppose that we measure the length of a piece of paper as 20.00 cm, by using a meter 
stick.  Then, after considering the process of measurement, we decide that we might be in 
error by as much as 0.02 cm (one-fifth of the smallest division of the stick).  We usually 
express this by saying that the length is 20.00 ± 0.02 cm. 
 
In this case, 0.02 cm would be the absolute uncertainty in the measurement or the 
possible absolute error in the measurement. 
 
We define the relative uncertainty in a measurement or the possible relative error in a 
measurement to be the ratio of the absolute uncertainty to the actual measurement; for 
our example, 0.02 cm/20.00 cm = 0.001 = 0.1 %. 
 
Note that the absolute uncertainty has the same units as the measurement; whereas the 
relative uncertainty is unitless and is often expressed as a percent. 
 
Uncertainty and possible error are synonyms.  Uncertainty is more often associated with 
measurements.  Possible error is more often associated with results calculated from 
measurements. 
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III. Use of Differentials to Represent Uncertainties 
 
Let the length of the paper in section II be called L.  Then we represent the absolute 
uncertainty in L by the symbol dL.  We represent the relative uncertainty in L by the ratio 
dL/L. 

Since relative uncertainties are usually rather small, the concept of a differential is useful 
in determining how two or more uncertainties combine together when measurements are 
used in mathematical operations.  This will be illustrated in the next section. 
 

IV. How Uncertainties in Data Affect Calculated Results 
 
Whenever a calculation is performed using measured data, there will be uncertainty in 
the result.  We will now consider how to determine the uncertainty in a result, when data 
is added, subtracted, multiplied, divided, or raised to an integer power.   
 
A. Addition 
 

Let S be the sum of two independent† quantities, S = A + B. 

The “worst-case” scenario is that both A and B were measured small or both were 
measured large; therefore, dS = dA + dB. 

Example:  (25.0 cm ± 0.2 cm) + (10.0 cm ± 0.5 cm) = 35.0 cm ± 0.7 cm 
†For calculations involving dependent quantities, refer to section IV-F. 

 
B. Subtraction 
 

Let D be the difference of two independent quantities, D = A - B. 

The “worst-case” scenario is now that A was measured too large and B too small or 
vice versa; therefore, dD = dA + dB. 

Example:  (25.0 cm ± 0.2 cm) - (10.0 cm ± 0.5 cm) = 15.0 cm ± 0.7 cm 
 
C. Multiplication 
 

Let P be the product of two independent quantities, P = AB. 

The “worst-case” scenario is that both A and B were measured small or both were 
measured large.  Since we are multiplying, we are concerned not with the absolute 
uncertainty of A or B, but with the relative uncertainties. 

The result is dP/|P| = dA/|A| + dB/|B|. 

Example:  (5.00 m ± 1%)(8.00 m ± 3%) = 40.0 m² ± 4% = 40.0 m² ± 1.6 m² 
(1.6 m² is obtained by calculating 4% of 40.0 m².) 

This rule can be verified by looking at the product of the largest values for A and B. 
(5.00 m + 1%)(8.00 m + 3%) = (5.05 m)(8.24 m) = 41.6 m² 
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D. Division 
 

Let Q be the quotient of two independent quantities, Q = A/B. 

The “worst-case” scenario is now that A was measured too large and B too small or 
vice versa.  Since we are dividing, we are concerned not with the absolute uncertainty 
of A or B, but with the relative uncertainties. 

The result is dQ/|Q| = dA/|A| + dB/|B|. 

Example: (3.00 g ± 1%)/(1.50 cm³ ± 3%)=2.00 g/cm³ ±4% = 2.00 g/cm³ ± 0.08 g/cm³ 

This rule can be verified by looking at the product of the largest value for A and the 
smallest value for B. 

(3.00 g + 1%)/(1.50 cm³ - 3%) = (3.03 g)/(1.455 cm³) = 2.08 g/cm³ 
 
Note: The general rule for addition and subtraction is that the absolute uncertainty in a 
sum or difference is equal to the sum of the absolute uncertainties in the quantities added.  
The general rule for multiplication and division is that the relative uncertainty in a 
product or quotient is equal to the sum of the relative uncertainties in the factors. 

Simply put:   If F = A ± B, dF = dA + dB.   

If G = A  B or G = A/B, then dG/|G| = dA/|A| + dB/|B|. 

 
E. Expressions Containing Only Powers, Multiplications and Divisions 
 

Since powers are simply repeated multiplication, we have, in effect only 
multiplications and divisions.  From the results of parts C and D, we see that we can 
simply sum the relative errors. 

For example, if A = BpCq/Dr, then  dA/|A|  = p dB/|B|  + q dC/|C|  + r dD/|D| 

The density of a cone is 
hr

m
V
mρ 2

3
1π

== , where m is the mass, r is the radius, and h 

is the height.  The relative uncertainty in the density is dρ/ρ = dm/m + 2 dr/r + dh/h, 
where dm, dr and dh are the absolute uncertainties in the mass, radius and height 
respectively. 

†F. Expressions containing dependent quantities. 
 

One must be careful to only apply the rules above to expressions containing 
independent quantities or else errors can be double or triple counted.  Two quantities 
calculated from the same measurement are dependent, as are a measured quantity and 
a value calculated from it. 

One simple geometric example of the latter case is the calculation of the difference 
between the circumference and diameter of a circle.  Consider a circle with a 
diameter measured to be 10.0 cm ± 0.2 cm (10.0 cm ± 2 %).  Its circumference is C = 
πd.  Since π is a constant, its relative uncertainty is zero and the circumference will 
have the same relative uncertainty as the diameter, 2 %.  The result is C = 31.4 cm ± 
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0.6 cm.  Using the rules above, we would find C – d = 21.4 cm ± 0.8 cm.  The 
uncertainty in the difference is actually less than 0.8 cm.  To calculate the actual 
value we must put together the two formulas above, C – d = πd – d = (π-1)d.  Since 
(π-1) is a constant, its relative uncertainty is zero and the difference will have the 
same relative uncertainty as the diameter, 2 %.  Thus, C – d = 21.4 cm ± 0.4 cm. 

An example of the first case would be the ratio of the volume of a sphere to its 
surface area.  Consider a sphere with a diameter measured to be 10.0 cm ± 0.2 cm 
(10.0 cm ± 2 %).  The surface area of the sphere is A = πd2.  Since π is a constant, its 
relative uncertainty is zero and the surface area will have twice the relative 
uncertainty of the diameter, 4 %.  The result is A = 314 cm ± 4 %.  The volume of 
the sphere is V = 1/6 πd3.  Since π/6 is a constant, its relative uncertainty is zero and 
the volume will have three times the relative uncertainty of the diameter, 6 %.  The 
result is V = 524 cm ± 6 %.  Using the rules above, we would find V/A = 1.66 cm ± 
10 %.  The relative uncertainty in the ratio is actually less than 10 %.  To calculate 
the actual value we must put together the formulas above, V/A = (1/6 πd3)/( πd2) = 
d/6.  Since 6 is a constant, its relative uncertainty is zero and the ratio will have the 
same relative uncertainty as the diameter, 2 %.  Thus, V/A = 1.66 cm ± 2 %. 

As shown in the two examples, when an expression contains dependent quantities, it 
is necessary to algebraically simplify the expression before calculating the relative 
uncertainty. 

       
G. Complex Expressions 

Complex expressions may be handled by repeated use of the previous results. 

Example:   Let 
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D = 100 ± 1 m, E = 3.00 ± 0.06 m, and F = 50.0 ± 1.0 m². 
 

Solution: 
( )( )

( )( ) ( )2

2
skg

m2

m0.150.0m06.03.00m1100

kg2.00.015.00.05

FDE
BCA

2

3

±−±±

±±
=

−
=  

( )( )
( )( ) ( )2

2
skg

m

m0.150.0%2m3.00%1m100

%2kg0.01%10.05
A

2

3

±−±±

±±
=  

( )( )
( ) ( )

( )( )
( ) ( )222

2
skg

m

22

2
skg

m

m0.150.0m0.9m300

%2kg0.01%10.05

m0.150.0%3m300

%2kg0.01%10.05
A

2

3

2

3

±−±

±±
=

±−±

±±
=  

( )( )
( )

( )( )
( )%4m250

%2kg0.01%10.05

m10m250

%2kg0.01%10.05
A 2

2
skg

m

22

2
skg

m
2

3

2

3

±

±±
=

±

±±
=  

222 s
mkg

s
mkg

s
mkg 8.10.20%90.20A ±=±=  

 



 
210  I-7 
 
SIGNIFICANT FIGURES AND DECIMAL PLACES 

 
Often, we wish to quickly estimate the precision of our calculated results without applying 
the rigor of the previous section.  To do this, we use rules that relate the number of decimal 
places or significant figures we can keep in a calculated value to the number of decimal 
places or significant figures in our data. 
 
I. Definitions 

 
The number of decimal places in a number is the number of digits to the right of the 
decimal point. 

The number of significant figures in a number is the total number of digits, exclusive of 
leading zeros. 

 
II. Examples 
 

The following table shows the number of decimal places and the number of significant 
figures in five numbers. 

 
Number Number of Decimal Places Number of Significant Figures 

15.73 2 4 
0.0072 4 2 
200.6 1 4 
1.2700 4 5 
4300 0 2, 3 or 4 

 
The ambiguity in the number of significant figures in the last example is easily removed 
by using scientific notation.  4.30 x 103 is three significant figures. 

 
 
III. Rules for Rounding Off Calculated Results 
 

In addition or subtraction, keep as many decimal places in the result as the smallest 
number of decimal places found in any of the numbers being added or subtracted. 

Examples: 20.5 + 1.483 = 22.0 

  19.03 - 18.96 = 0.07 

  10.512 - 9.8 = 0.7 

  4.93 + 6.26 = 11.19 

Notice that the number of significant figures in the result can be more than the number of 
significant figures in either number or less than the number of significant figures in either 
number. 
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In multiplication or division, keep as many significant figures as the smallest number of 
significant figures found in any of the numbers being multiplied or divided. 

Examples:   38.75(49.186)/1.48 = 1.29 103 or 1290, but NOT 1287.81. 

  (1.237)(43.9)2 = (1.237) (43.9) (43.9) =2380 or 2.38 103

The reasonableness of these rules may be established by using the methods discussed in 
the previous section. 
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