Review #1: Basic Math

All exercises should be done without calculators.

A. Simplify. Assume all variables represent non-zero real numbers. Write all answers with only positive exponents.

1.
$$(3^{-2})^3$$

2.
$$(-2^2)^3$$

3.
$$(2/3)^{-3}$$
 4. $6^{12} \cdot 6^{10}$

5.
$$-3^2 \cdot 2^3$$
 6. $\frac{-5^{-2}}{5^{-3}}$

6.
$$\frac{-5^{-2}}{5^{-3}}$$

9.
$$\frac{a^{-2}a^4}{a^6a^{-13}}$$

11.
$$\frac{-3^4 \omega^2 \rho^{-3}}{(-6)^3 \omega^{-8} \rho^5}$$

9.
$$\frac{a^{-2}a^4}{a^6a^{-13}}$$
 10. $5(-2b)^2 (b^3)^6$ 11. $\frac{-3^4\omega^2\rho^{-3}}{(-6)^3\omega^{-8}\rho^5}$ 12. $\frac{(\sin\phi)^2(\sin\phi)^{-8}}{(\sin\phi)^6}$

13.
$$\frac{(x+y)^3(x+y)^2(x+y)^{-8}}{(x+y)^5(x+y)^{-16}}$$

14.
$$\frac{\left(a^3b^{-2}c^5\right)^{-4}\left(-2a^2b^4c\right)^3\left(-3ac^{-2}\right)^{-2}}{\left(2a^6b^3\right)^4\left(-b^{-3}c^5\right)^{-2}}$$

15.
$$[(\psi + \lambda)^2 (\psi + \lambda)^{-3} (\psi + \lambda)^{15} + (\psi + \lambda)^8 (\psi + \lambda)^2]^0$$

B. Simplify. Assume all variables represent positive real numbers.

1.
$$8^{\frac{2}{3}}$$

2.
$$\sqrt{3.6 \times 10^5}$$

2.
$$\sqrt{3.6 \times 10^5}$$
 3. $5^{1/4}\sqrt{45^{1/4}}$ 4. $\sqrt[3]{(3 \times 10^2)(9 \times 10^{10})}$

5.
$$-2^2 \cdot 3^3$$
 6. $\sqrt[3]{-64}$

6.
$$\sqrt[3]{-64}$$

7.
$$\sqrt[5]{\frac{(x+y)^2}{(x+y)^7}}$$
 8. $\sqrt{\frac{36}{81}}$

8.
$$\sqrt{\frac{36}{81}}$$

9.
$$\sqrt[5]{-m^{10}n^{25}}$$

9.
$$\sqrt[5]{-m^{10}n^{25}}$$
 10. $\sqrt[4]{(100^2)(10^6)(1000^2)}$ 11. $\frac{\frac{1}{r^4r^2}}{\frac{3}{r^4}}$ 12. $\left(\frac{z^{-1}x^{-3/5}}{2^{-2}z^{-1/2}x}\right)^{-5}$

$$12. \left(\frac{z^{-1} x^{-3/5}}{2^{-2} z^{-1/2} x} \right)^{-1}$$

13.
$$\frac{\sqrt[3]{\sigma\mu^2}\sqrt[3]{\sigma^5\mu^{-2}}}{\sqrt[3]{\sigma^8\mu^4}\sqrt[3]{\sigma^7\mu^5}}$$
 14. $3\sqrt{8} - 5\sqrt{2}$

14.
$$3\sqrt{8} - 5\sqrt{2}$$

C. Rewrite each relation using logarithmic notation.

1.
$$x^3 = 4$$

1.
$$x^3 = 4$$
 2. $2^{-5} = \frac{1}{32}$ 3. $b^p = E$ 4. $4^x = 64$

3.
$$b^p = B$$

4.
$$4^x = 64$$

D. Rewrite each relation in exponential form.

1.
$$\log_{b} 3 = E$$

2.
$$\log_{10}1000 = 3$$

3.
$$\log_3 x = y$$

3.
$$\log_3 x = y$$
 4. $\log_8(1/8) = -1$

E. Write each of the following as a single logarithm. Assume all variables represent positive real numbers. Simplify as much as possible.

1.
$$\log_b 3\mu + \log_b 7$$

2.
$$\log_{4}2 + \log_{4}8$$

3.
$$6\log_x m - 2\log_x q$$
 4. $x\log_b 3 - 3\log_b 3^x$

F. Solve each equation for the indicated variable. Simplify your results.

1. Solve for
$$\mu: 3\mu + \Delta = 3\Delta + \mu$$

2. Solve for q:
$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

3. Solve for
$$t : x = vt + \frac{1}{2}at^2$$

4. Solve for
$$\beta$$
: $\beta - 3\phi + 90 = 5\beta + 4\phi + 180$

5. Solve for
$$v : mgh = \frac{1}{2}mv^2 + mgy$$

6. Solve for a:
$$Mg - Ma = \mu mg + ma$$
.

7. i. Solve for t:
$$x_f = x_i + v_i t + \frac{1}{2} a t^2$$

ii. Find t when
$$x_i = 0$$
 m, $x_f = 18.75$ m, $v_i = 0$ m/s, and $a = 1.5$ m/s².

iii. Find t when
$$x_i = 18.75$$
 m, $x_f = 32.25$ m, $v_i = 7.5$ m/s, and $a = -2.0$ m/s².