Review of Exponential and Logarithmic Functions

Definition: For $b>0$ and $b \neq 1$, and all real numbers x, $y=b^{x}$
is an exponential function with "base b."
Property: For $b>0$ and $b \neq 1$, if $b^{x}=b^{y}$, then $x=y$.
Definition: For $b>0$ and $b \neq 1$, and all positive numbers x,
$y=\log _{b} x$
means the same as $x=b y$.
Properties: If $b>0$ and $b \neq 1$, then $\log _{b} b^{x}=x$.
If $\mathrm{b}>0$ and $\mathrm{b} \neq 1$ and $\mathrm{x}>0$, then $\mathrm{b}^{\log _{b} \mathrm{x}}=\mathrm{x}$.
For $b>0$ and $b \neq 1, \log _{b} b=1$ and $\log _{b} 1=0$.
Rules of Logarithms
Product Rule: If x, y, and b are positive numbers, $b \neq 1$, then

$$
\log _{b} x y=\log _{b} x+\log _{b} y
$$

Quotient Rule: If x, y, and b are positive numbers, $b \neq 1$, then

$$
\log _{b}(x / y)=\log _{b} x-\log _{b} y
$$

Power Rule: If x and b are positive real numbers, $b \neq 1$, and if n is any real number, then

$$
\log _{b} x^{n}=n \log _{b} x
$$

Verifying the rules of logarithms.
To prove the product rule, rewrite the logarithmic statements in exponential form

$$
\log _{b} x=m \text { means } b^{m}=x \text { and } \log _{b} y=n \text { means } b^{n}=y
$$

So, by substitution, and using the product rule for exponents,

$$
x y=b^{m} \cdot b^{n}=b^{m+n}
$$

Rewrite this in logarithmic form,

$$
\log _{b} x y=m+n
$$

Now substitute for m and n to get

$$
\log _{b} x y=\log _{b} x+\log _{b} y
$$

These rules and properties can be used to solve algebra problems as shown in the following example.

Example: Solve the following equation for $x: 5^{x+3}=25$.
Take $\log _{5}$ of both sides of the equation: $\log _{5} 5^{x+3}=\log _{5} 25$
This leads to $x+3=\log _{5} 5^{2}$ which becomes $x+3=2$. Solving gives $x=-1$.

Commonly Confused Expressions
(1) $\log _{b}(x \pm y)$ is not the same as $\log _{b} x \pm \log _{b} y$.
(2) $\log _{b}(x y)$ is not the same as $\left(\log _{b} x\right)\left(\log _{b} y.\right)$

EXERCISES

1. a. For each statement given in exponential form, rewrite it in logarithmic form.
i. $2^{x}=4$
ii. $10^{5}=100,000$
iii. $4^{-3}=1 / 64$
b. For each statement given in logarithmic form, rewrite it in exponential form.
i. $\log _{2} 8=3$
ii. $\log _{10} 1,000,000=6$
iii. $\log _{3} \frac{1}{9}=-2$.
2. Solve the following equations for the given variable.
a. $2^{x}=4$
b. $9^{x}=27$
c. $4^{x}=64$
d. $3^{x}=\frac{1}{9}$
e. $\left(\frac{1}{2}\right)^{x}=8$
f. $6^{-x}=\frac{1}{6}$
g. $2^{3 x+2}=16$
h. $16^{(x+1) / 2}=32$

Problems 3 and 4 may be done as in-class exercises. Check with your instructor.
3. Show why for the first property (For $b>0$ and $b \neq 1$, if $b^{x}=b^{y}$, then $x=y$.), the statement " $b \neq 1$ " is necessary.
4. Verify the quotient rule and the power rule.
5. Evaluate the following.
a. $\log _{10} 1,000$
b. $\log _{10} 0.001$
c. $\log _{10} 1$
d. $\log _{8} 64$
e. $\log _{5} 125$
f. $\log _{3}(1 / 27)$
g. $\log _{5} 25^{2}$
h. $\log _{3} 27^{1 / 2}$
6. Solve each equation for the given variable.
a. $y=\log _{6} 216$.
b. $\log _{5} x=-3$
c. $\log _{x} 9=1 / 2$
d. $\log _{c} 125=-3$
e. $\log _{4} x=5 / 2$
f. $\log _{2} \mu=0$
g. $\log _{p} 0.1=1$
h. $\log _{1 / 2} f=1$
7. Write each of the following as a single logarithm. Assume all variables represent positive real numbers. Simplify as much as possible.
a. $\log _{6} 2+\log _{6} 3$
b. $\log _{10} 50-\log _{10} 5$
c. $3 \log _{5} 2+\log _{5} 6^{2}$
8. Find examples that illustrate the commonly confused expressions.

