Review of Exponential and Logarithmic Functions

Definition: For b > 0 and b \neq 1, and all real numbers x, y = b^x is an exponential function with "base b."

Property: For b > 0 and $b \neq 1$, if $b^x = b^y$, then x = y.

Definition: For b > 0 and b \neq 1, and all positive numbers x, y = log_b x means the same as x = b^y.

Properties: If b > 0 and $b \neq 1$, then $log_b b^x = x$.

If b > 0 and $b \neq 1$ and x > 0, then $b^{\log_b x} = x$.

For b > 0 and $b \neq 1$, $\log_b b = 1$ and $\log_b 1 = 0$.

Rules of Logarithms

Product Rule: If x, y, and b are positive numbers, $b \neq 1$, then log_b xy = log_b x + log_b y.

Quotient Rule: If x, y, and b are positive numbers, $b \neq 1$, then $\log_b (x/y) = \log_b x - \log_b y$.

Power Rule: If x and b are positive real numbers, $b \neq 1$, and if n is any real number, then log_b xⁿ = n log_b x.

Verifying the rules of logarithms.

To prove the product rule, rewrite the logarithmic statements in exponential form

log_b x = m means $b^m = x$ and log_b y = n means $b^n = y$. So, by substitution, and using the product rule for exponents, $xy = b^{m} \cdot b^n = b^{m+n}$. Rewrite this in logarithmic form, $log_b xy = m + n$. Now substitute for m and n to get $log_b xy = log_b x + log_b y$.

These rules and properties can be used to solve algebra problems as shown in the following example.

Example: Solve the following equation for x: $5^{x+3} = 25$. Take log₅ of both sides of the equation: $\log_5 5^{x+3} = \log_5 25$ This leads to x + 3 = $\log_5 5^2$ which becomes x + 3 = 2. Solving gives x = -1. Commonly Confused Expressions

- (1) $\log_b (x \pm y)$ is not the same as $\log_b x \pm \log_b y$.
- (2) $\log_b (xy)$ is not the same as $(\log_b x) (\log_b y.)$

EXERCISES

1. a. For each statement given in exponential form, rewrite it in logarithmic form.

i. $2^{x} = 4$ ii. $10^{5} = 100,000$ iii. $4^{-3} = 1/64$

b. For each statement given in logarithmic form, rewrite it in exponential form.

i. $\log_2 8 = 3$ ii. $\log_{10} 1,000,000 = 6$ iii. $\log_3 \frac{1}{9} = -2$.

2. Solve the following equations for the given variable.

a. $2^{x} = 4$ b. $9^{x} = 27$ c. $4^{x} = 64$ d. $3^{x} = \frac{1}{9}$ e. $\left(\frac{1}{2}\right)^{x} = 8$ f. $6^{-x} = \frac{1}{6}$ g. $2^{3x+2} = 16$ h. $16^{(x+1)/2} = 32$

Problems 3 and 4 may be done as in-class exercises. Check with your instructor.

3. Show why for the first property (For b > 0 and $b \neq 1$, if $b^x = b^y$, then x = y.), the statement "b \neq 1" is necessary.

4. Verify the quotient rule and the power rule.

5. Evaluate the following.

a. log ₁₀ 1,000	b. log ₁₀ 0.001	c. log ₁₀ 1	d. log ₈ 64
e. log ₅ 125	f. log ₃ (1/27)	g. log ₅ 25 ²	h. log ₃ 27 ^{1/2}

6. Solve each equation for the given variable.

a. y = log ₆ 216.	b. log ₅ x = -3	c. $\log_{x} 9 = 1/2$	d. log _c 125 = -3
e. log ₄ x = 5/2	f. log ₂ μ = 0	g. log _p 0.1 = 1	h. log _{1/2} f = 1

7. Write each of the following as a single logarithm. Assume all variables represent positive real numbers. Simplify as much as possible.

a. $\log_6 2 + \log_6 3$ b. $\log_{10} 50 - \log_{10} 5$ c. $3\log_5 2 + \log_5 6^2$

8. Find examples that illustrate the commonly confused expressions.