## REVIEW OF ROOTS AND RADICALS

Definition: For any real number $x$ and natural number $n$, the real number $r$ is an $n$th root of $x$ if $r^{n}=x$.

| $\sqrt[n]{x}$ | denotes the nth root of $x$. |
| :---: | :--- |
| $x$ | is the radicand. |
| $\sqrt{ }$ | is the radical sign or the radical. |
| n | is the index, or order, of the radical. |

Square roots: If $x$ is a real number and $x>0$,

$$
\begin{aligned}
\sqrt{x} & \text { is the positive (prinicipal) square root of } x . \\
-\sqrt{x} & \text { is the negative square root of } x .
\end{aligned}
$$

If $x$ is any real number, then $\sqrt{x^{2}}=|x|$.
Fractional exponents: The nth root of $x$ can be denoted by $x^{1 / n}$ or $\sqrt[n]{x}$.

$$
\text { Therefore, } x^{1 / n}=\sqrt[n]{x} \text {. }
$$

For all positive integers $n, 0^{1 / n}=0$.
If $x$ is positive and $n$ is an even positive integer, then $x^{1 / n}$ is positive.
If $x$ is positive and $n$ is an odd positive integer, then $x^{1 / n}$ is positive.
If $x$ is negative and $n$ is an even positive integer, then $x^{1 / n}$ is not a real number.
If $x$ is negative and $n$ is an odd positive integer, then $x^{1 / n}$ is negative.
RULES OF RADICALS
Product Rule: If $x$ and $y$ are any positive real numbers and $n$ is a natural number, then

$$
\sqrt[n]{x} \cdot \sqrt[n]{y}=\sqrt[n]{x y} \text { or } x^{1 / n \cdot y^{1 / n}}=(x y)^{1 / n} .
$$

Note: This rule is frequently used when working with quantities with units. Suppose you wish to know the length of an edge of a square with an area of $25 \mathrm{in}^{2}$. The length is related to the area by, $L^{2}=A$, so $L=\sqrt{A}=\sqrt{25 \text { in }^{2}}=\sqrt{25} \cdot \sqrt{\text { in }^{2}}=5 \mathrm{in}$.

Quotient Rule: If $x$ and $y$ are any positive real numbers $(y \neq 0)$ and $n$ is a natural number, then

$$
\sqrt[n]{\frac{x}{y}}=\frac{\sqrt[n]{x}}{\sqrt[n]{y}} \text { or }\left(\frac{x}{y}\right)^{1 / n}=\frac{x^{1 / n}}{y^{1 / n}}
$$

Power Rule: If $m$ and $n$ are positive integers, then

$$
x^{m / n}=\left(x^{1 / n}\right)^{m}=\left(x^{m}\right)^{1 / n}
$$

provided all indicated roots exist.
If $x^{m / n}$ exists and $x \neq 0$, then $x^{-m / n}=\frac{1}{x^{m / n}}$.
Since radicals can be written in fractional exponent form, these and other rules follow from the definitions and rules of exponents.

## COMMONLY CONFUSED EXPRESSIONS

(1) $x^{1 / n} \neq \frac{1}{x^{n}}$
(2) $\sqrt[n]{x+y} \neq \sqrt[n]{x}+\sqrt[n]{y}$

## EXERCISES

1. Find examples that illustrate commonly confused expressions (1) and (2).
2. Without using a calculator, find the numerical equivalent of (that is, solve) each of the following.
a. $\sqrt{4}+\sqrt{25}$
b. $64^{1 / 2}-36^{1 / 2}$
c. $\sqrt[3]{27}-\sqrt[4]{16}$
d. $125^{1 / 3}+625^{1 / 4}$
e. $\sqrt[3]{8} \sqrt{9}$
f. $125^{1 / 3} \times 25^{1 / 2}$
g. $\frac{\sqrt[3]{100^{3} 10^{12}}}{\sqrt[3]{10^{9}}}$
h. $\left(10^{27}\right)-1 / 3 \times\left(10^{10}\right)^{2 / 5}$
3. Simplify each expression if possible. Assume that all indicated roots exist.
a. $\sqrt{a}+\sqrt{b}$
b. $\sqrt[3]{\sigma}-\sqrt[4]{\sigma}$
c. $2 \sqrt[3]{\sigma}-\sqrt[3]{\sigma}$
d. $2 \sqrt[3]{\sigma} \cdot \sqrt[3]{\sigma}$
e. $\left(\sqrt[3]{\left(27 x^{2} y\right)^{6}}\right)\left(\sqrt[3]{\left(8 x^{3} y^{6}\right)^{2}}\right)$
f. $\left(\sqrt[3]{\left(6 x^{2} y\right)}\right)\left(\sqrt[3]{\left(36 x^{4} y^{2}\right)}\right)$
g. $\sqrt[3]{(\alpha+\beta)^{6}} \sqrt{(\alpha+\beta)^{6}}$
h. $\frac{\left(\sqrt[3]{(\lambda+\mu)^{6}}\right)(\lambda+\mu)}{\sqrt[3]{(\lambda+\mu)^{9}}}$
i. $\frac{\sqrt[3]{(\lambda+\mu)^{6}}+(\lambda+\mu)}{\sqrt[3]{(\lambda+\mu)^{9}}}$
j. $\left[(z+T)^{36}\right]^{-1 / 3} \times\left[(z+T)^{27 / 6}\right]^{2}$
k. $\frac{\left(\sqrt[3]{(a+b)^{5}}\right)\left(\sqrt[3]{(a+b)^{4}}\right)}{\sqrt[3]{(a+b)^{12}}}$
I. $\frac{\left(\sqrt[5]{(a b)^{51}}\right)\left(\sqrt[5]{(a b)^{21}}\right)}{\sqrt[5]{(a b)^{12}}}$
m. $\frac{\left(\sqrt[3]{\left(3 p^{2} q\right)^{5}}\right)\left(\sqrt[3]{\left(3 p^{5} q^{2}\right)^{4}}\right)}{\sqrt[3]{\left(p^{6} q^{2}\right)^{2}}}$
n. $\frac{\left(\sqrt[4]{\left(6 x^{2} y^{3}\right)^{2}}\right)\left(\sqrt[4]{\left(3 x^{3} y^{4}\right)^{5}}\right)}{\sqrt[4]{\left(12 x^{5} y^{2}\right)^{3}}}$
