College of San Mateo Official Course Outline

COURSE ID: ELEC 442 TITLE: Electronic and Pneumatic Process Control Systems Units: 4.0 units Hours/Semester: 48.0-54.0 Lecture hours; 48.0-54.0 Lab hours; and 96.0-108.0 Homework hours Method of Grading: Letter Grade Only

Prerequisite: ELEC 441

2. COURSE DESIGNATION:

Degree Credit Transfer credit: CSU

3. COURSE DESCRIPTIONS:

Catalog Description:

A practical course in industrial electronic and industrial pneumatic control systems. Calibration theory, a review of transmitter calibration, electronic systems, pneumatic systems, controller operation, control loop theory, PID, loop tuning, and control loop troubleshooting are stressed.

4. STUDENT LEARNING OUTCOME(S) (SLO'S):

Upon successful completion of this course, a student will meet the following outcomes:

- 1. Perform the calibration of and describe how to troubleshoot electronic and pneumatic temperature controllers.
- 2. Perform the calibration of and describe how to troubleshoot electronic and pneumatic pressure controllers.
- 3. Perform the calibration of and describe how to troubleshoot electronic and pneumatic flow controllers.
- 4. Describe various feedback control modes (PID), describe the methods used for control loop tuning, and perform P, PI, and PID loop tuning.
- 5. Identify system errors and troubleshooting techniques.

5. SPECIFIC INSTRUCTIONAL OBJECTIVES:

Upon successful completion of this course, a student will be able to:

- 1. Perform the calibration of and describe how to troubleshoot electronic and pneumatic temperature controllers.
- 2. Perform the calibration of and describe how to troubleshoot electronic and pneumatic pressure controllers.
- 3. Perform the calibration of and describe how to troubleshoot electronic and pneumatic flow controllers.
- 4. Describe various feedback control modes (PID), describe the methods used for control loop tuning, and perform P, PI, and PID loop tuning.
- 5. Identify system errors and troubleshooting techniques.

6. COURSE CONTENT:

Lecture Content:

- 1. Principles of calibration
- 2. Primary calibration standards
- 3. instrument errors
- 4. review on instrument calibration
- 5. feedback control
- 6. transmitters
- 7. controllers, indicators, and recorders
- 8. basic principles of loop tuning
- 9. instrument loop troubleshooting
- 10. pneumatic instrument theory
- 11. air supplies and regulators
- 12. pneumatic transmitters and recorders
- 13. pneumatic controllers
- 14. relays and transducers
- 15. basic and transducers
- 16. basic control valves
- 17. body and trim maintenance
- 18. actuator maintenance

- 19. positioner maintenance
- 20. Pneumatic test equipment

Lab Content:

The lab content reinforces the lecture content and materials in a practical, applied manner.

7. REPRESENTATIVE METHODS OF INSTRUCTION:

- Typical methods of instruction may include:
 - A. Lecture
 - B. Other (Specify): Lectures, analytical problem sets, essay question sheets, topic reading assignments, and assigned computer simulation activities.

8. REPRESENTATIVE ASSIGNMENTS

Representative assignments in this course may include, but are not limited to the following:

Writing Assignments:

Case studies with detailed analysis. Written exams.

Reading Assignments:

Read assigned chapters from textbook and supplemental materials given in class.

9. REPRESENTATIVE METHODS OF EVALUATION

Representative methods of evaluation may include:

- A. Class Participation
- B. Class Performance
- C. Class Work
- D. Exams/Tests
- E. Group Projects
- F. Homework
- G. Papers
- H. Quizzes
- I. Written examination

10. REPRESENTATIVE TEXT(S):

Possible textbooks include:

A. Kuphaldt, Tony . *Lessons in Industrial Instrumentation*, ed. Creative Commons, 2016 Other:

- A. Topic appropriate chapter selections from the Control Guru's Practical Process Control website available at http://www.controlguru.com/pages/table.html
- B. Topic appropriate articles published in the online edition of Control Engineering magazine available at http://www.controeng.com
- C. Hardware appropriate user's manuals and company produced setup and operation oriented You Tube videos available at www.omega.com/technicalsupport

Origination Date: September 2016 Curriculum Committee Approval Date: October 2016 Effective Term: Fall 2017 Course Originator: Anne Figone