College of San Mateo
Official Course Outline

1. COURSE ID: DGME 103 TITLE: Thinking Visually: Fundamentals of Two-Dimensional Design
Units: 3.0 units Hours/Semester: 48.0-54.0 Lecture hours; and 16.0-18.0 Lab hours
Method of Grading: Grade Option (Letter Grade or P/NP)

2. COURSE DESIGNATION:
 Degree Credit
 Transfer credit: CSU; UC
 AA/AS Degree Requirements:
 CSM - GENERAL EDUCATION REQUIREMENTS: E5d. Career Exploration and Self-Development

3. COURSE DESCRIPTIONS:
 Catalog Description:
 Exploring basic theoretical and practical concepts of 2D design. Students apply visual solution strategies to solve design problems in a series of design projects. A materials fee as shown in the Schedule of Classes is payable upon registration.

4. STUDENT LEARNING OUTCOME(S) (SLO'S):
 Upon successful completion of this course, a student will meet the following outcomes:
 1. Apply practical knowledge of the concepts of 2D design.
 2. Create a series of design projects that reveal successful comprehension and application of the various principles of 2D design.
 3. Use their nascent visual discrimination skills to solve design problems.
 4. Use acquired theoretical and practical knowledge of the concepts and terms of 2D design when self-critiquing and critiquing the work of others.
 5. Apply visual solution strategies to design problems.

5. SPECIFIC INSTRUCTIONAL OBJECTIVES:
 Upon successful completion of this course, a student will be able to:
 1. Apply practical knowledge of the concepts of 2D design.
 2. Create a series of design projects that reveal successful comprehension and application of the various principles of 2D design.
 3. Use their nascent visual discrimination skills to evaluate the efficacy of designs.
 4. Use acquired theoretical and practical knowledge of the concepts and terms of 2D design when self-critiquing and critiquing the work of others. (KB's modification)
 5. Apply visual solution strategies to design problems.

6. COURSE CONTENT:
 Lecture Content:
 1. THE PHYSICS OF LIGHT, THE BIOLOGY OF VISION
 A. Test your visual acuity: a series of visual eye openers
 B. How we see: the properties of light, the nature of vision, and why it matters
 2. IMAGE COGNITION AND COMPREHENSION
 A. How the brain "sees" and why it matters to a visual artist
 B. Eye traces, fMRI's, and what they reveal about how the brain decodes images; applying that knowledge to 2D design
 3. COMMUNICATION
 A. Expression of content and meaning
 B. Levels of communication: representational, symbolic, abstract
 C. Symbology
 D. Photography / Illustration / Video
 E. Typography
 F. Time and motion
 4. THE DESIGN PROCESS
 A. Problem definition
 B. Research
 C. Ideation, thinking strategies
D. Development
E. Refinement, analysis
F. Production
G. Presentation

5. SEEING FORM AND SPACE
 A. Form and content
 B. Form conveys meaning
 C. The nature and quality of space: active, passive, neutral
 D. The shape of space: formats
 E. Formats and media

6. DESIGN ELEMENTS
 A. The dot
 B. Line: imagined and concrete
 C. Shapes positive and negative
 D. Geometric and organic shapes
 E. Surface activity: texture and pattern

7. COLOR AND COLOR RELATIONSHIPS
 A. Hue, hue relationships
 B. Saturation, saturation relationships
 C. Value, value relationships
 D. Temperature, temperature relationships
 E. Color's use in form and space
 F. Coding with color

8. GESTALT PRINCIPLES OF DESIGN
 A. Equilibrium; symmetry and asymmetry; felt axis, horizontal referents
 B. Continuation
 C. Closure
 D. Figure and ground
 E. Proximity; separation and grouping
 F. Isomorphic correspondence
 G. Similarity and anomaly (grouping and contrast)

9. BREAKING SPACE
 A. Use of negative space
 B. Passive and dynamic space
 C. Edge tension

10. IMPLYING DEPTH
 A. Layering
 B. Overlap and transparency
 C. Scale
 D. Perspective
 E. Atmospheric perspective/value relationships
 F. Texture

11. COMPOSITIONAL STRATEGIES
 A. Contrasts
 B. Tension
 C. Grouping and separation
 D. Alignments, masses, and voids
 E. Proportional systems for division of space
 F. Grids: column, modular, hybrids
 G. Grid development
 H. Variation within and violation of the grid

12. NONSTRUCTURAL APPROACHES TO COMPOSITION
 A. Intuitive arrangement
 B. Grid deconstruction
 C. Spontaneous optical composition

13. VISUAL LOGIC
 A. Interrelatedness of all design elements
 B. Graphic resonance
 C. Evaluating optical weight
 D. Developing visual hierarchies
E. The importance of clarity, decisiveness, and clear intentions

Lab Content:
During the lab portion of the course, students will work on series of digital art and design projects under the guidance of the instructor. All of the course projects contain a technical and a conceptual component in order to help students to develop their software skills and understanding of design fundamentals.

7. REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:
A. Lecture
B. Lab
C. Critique
D. Discussion
E. Field Trips
F. Guest Speakers
G. Other (Specify): Lectures with supporting visuals and audio. Reading and practical textbook assignments to be completed and turned in. Projects created by the instructor to test student comprehension will be completed by the students and turned in. Students will discuss material presented in lectures and critique each other's work using newly acquired design terminology. Lectures by visiting artists and field trips will be organized by the instructor to enhance learning experience.

8. REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:

Writing Assignments:
Students write very brief amounts of subordinate copy for some projects.

In lieu of writing assignments students do utilize critical thinking skills, applied creativity, and visual storytelling strategies. They must convey a message using typography, images, colors, formatting and layout decisions. It is not writing by any means, but it certainly is the expression of meaning, albeit much more abstractly.

Reading Assignments:
Reading and practical textbook assignments to be completed and turned in.

9. REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:
A. Field Trips
B. Homework
C. Projects
D. Quizzes
E. Research Projects
F. Letter grades are determined by analyzing the quality of execution, attention to detail, level of craft, successful application of design principles, effectiveness of final solution on projects and assignments.

10. REPRESENTATIVE TEXT(S):
Possible textbooks include:

Origination Date: September 2015
Curriculum Committee Approval Date: February 2016
Effective Term: Fall 2016
Course Originator: Vera Fainshtein