
College of San Mateo
Official Course Outline

COURSE ID: CIS 278 TITLE: (CS1) Programming Methods: C++ C-ID: COMP 122
Units: 4.0 units Hours/Semester: 48.0-54.0 Lecture hours; 48.0-54.0 Lab hours; and 96.0-108.0 Homework
hours
Method of Grading: Grade Option (Letter Grade or Pass/No Pass)
Prerequisite: MATH 120, CIS 254
Recommended Preparation:

Eligibility for ENGL 838 or ENGL 848 or ESL 400.

1.

COURSE DESIGNATION:
Degree Credit
Transfer credit: CSU; UC
AA/AS Degree Requirements:

CSM - GENERAL EDUCATION REQUIREMENTS: E2c.Communication and Analytical Thinking
CSU GE:

CSU GE Area B: SCIENTIFIC INQUIRY AND QUANTITATIVE REASONING: B4 -
Mathematics/Quantitative Reasoning

2.

COURSE DESCRIPTIONS:
Catalog Description:

Object-oriented programming methodology for both computer science majors and computer professionals.
Systematic approach to design, construction, and management of computer programs; emphasizing
program documentation, testing, debugging, maintenance and software reuse. Also includes UML, virtual
machines, exception handling, sorting and searching algorithms, recursion, fundamental graphics, and
computer ethics. This course conforms to the ACM CSI standards. A materials fee as shown in the
Schedule of Classes is payable upon registration.

3.

STUDENT LEARNING OUTCOME(S) (SLO'S):
Upon successful completion of this course, a student will meet the following outcomes:

Demonstrate knowledge and understanding of the principal object-oriented programming concepts.1.
Implement a medium-size computer program that is stylistically and functionally correct, based on an
object-oriented design model.

2.

Reuse existing components through inheritance and polymorphism.3.
Implement, test, and debug simple recursive functions.4.
Demonstrate different forms for binding, visibility, scope and lifetime management.5.
Employ components in the C++ Standard Template Library (STL).6.
Utilize exception handling to provide a robust computer application7.
Relate the development of high level languages to the programming paradigms used today8.

4.

SPECIFIC INSTRUCTIONAL OBJECTIVES:
Upon successful completion of this course, a student will be able to:

Demonstrate knowledge and understanding of the principal object-oriented programming concepts.1.
Implement a medium-size computer program that is stylistically and functionally correct, based on an
object-oriented design model.

2.

Reuse existing components through inheritance and polymorphism.3.
Implement, test, and debug simple recursive functions.4.
Demonstrate different forms for binding, visibility, scope and lifetime management.5.
Employ components in the C++ Standard Template Library (STL).6.
Utilize exception handling to provide a robust computer application7.
Relate the development of high level languages to the programming paradigms used today8.

5.

COURSE CONTENT:
Lecture Content:

INTRODUCTION:

 History of High Level Languages
 Programming Paradigms
 C++ and Object Oriented Programming

6.

 Translation: Compilers vs Interpreters
 Execution: Compilers and Linkers
 Portability

ALGORITHMS AND PROBLEM SOLVING:

 Development of an algorithm
 Coding an algorithm
 Debugging strategies (output stmts, IDE debugger)

C++ FUNDAMENTALS:

 Data Types and Internal Representation
 Variables, Expressions and Assignment Statements
 Variable scope and binding
 Type checking in C++
 Control Structures
 I/O streams cout, cerr, cin ; Libraries and namespaces

FUNCTIONS :

 Predefined functions
 Programmer defined functions
 Call by ref/call by val
 Function prototypes
 Separate compilation
 Scope, lifetime and visibility local variables
 Function overloading
 Default arguments
 Recursive algorithms/functions

C++ Arrays

 Declaration, element access, traversal
 Array parameters
 Partially filled arrays
 Simple searching/sorting
 STL vector class

C++ CLASSES and OBJECTS

 UML class diagrams
 Public and private members
 Overloading constructors
 Const functions
 Operator overloading (member, friend and non-member)
 Derived classes and function redefinition
 Static vs dynamic binding
 Polymorphism – virtual functions and abstract classes

C++ Strings

 C-strings
 String class

Pointers and Dynamic Memory Allocation

 Dynamic arrays
 Pointers to objects
 Classes and Dynamic Memory
 Copy constructor, = overload, Destructor

FILE I/O

 Reading from and creating simple text files

 Object Persistence thru Files

EXCEPTION HANDLING

 Creating exception classes
 When/how to throw/catch an exception

TEMPLATE

Classes and Methods

SOFTWARE ENGINEERING ISSUES

 Requirements and specifications
 Design for reuse
 Iterative development and testing

Lab Content:

Students complete small programming exercises which relate to the current class lecture. Lab exercises
involve:

Using Microsoft Express (or current IDE) to create a simple project1.
Writing a program which uses C++ I/O, iostream library and namespace directive2.
Writing a program which uses C++ predefined library functions (such as rand and srand)3.
Coding two file program, one file containing a function requiring call by ref parameters, the other file
containing an application which calls that function

4.

Writing a recursive function and an app which verifies it's correctness5.
Debugging an existing recursive function6.
Writing a program which uses a static array for storage (involves array storage, retrieval and update) 7.
Writing a program which uses a partially filled array to store data8.
Writing a program which requires input and modification of a C-string, requiring use of the library9.
Coding a simple class with constructor, mutators and access functions, and an app that uses an object of
that type

10.

Modifying a class to include functions with object parameters and static functions11.
Coding erroneous test responses and debugging them12.
Modifying a class to include binary and unary operator overload functions as class members 13.
Modifying a class to include binary and unary operator overload functions as friend functions 14.
Modifying a class to include binary and unary operator overload functions as non-member, non-friend
functions

15.

Coding a class which requires a dynamic array member variable, and providing copy constructor,
=operator overload and destructor

16.

Given a class, coding a class which derives from that class, providing constructors, mutators and access
methods

17.

Modifying a derived class to override base class functions18.
Modifying a base class to include virtual and pure virtual functions, adjusting derived classes accordingly19.
Given an existing application, add exception handing capabilities20.
Writing a simple program which reads data from a file, and produces a copy of that file21.
Writing a program which reads object input from a file, stores and updates object, and stores data back to
file

22.

Code a couple template functions23.
Use functions from the STL library in an application24.
Code a simple template class and app 25.

REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:

Lecture A.
Lab B.
Activity C.
Discussion D.
Individualized Instruction E.

7.

Observation and Demonstration F.
Other (Specify): Lectures, to introduce new topics; “Models” for problem-solving techniques; Class
(group) problem solving , each person contributing a potential "next step"; Student participation in short
in-class projects; Q/A sessions with students providing both the questions AND the answers; Students
working in small groups to solve significant programming assignments. Live code development/debugging
demonstrations.

G.

REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:
Writing Assignments:

 The primary writing opportunity for students in this course is documentation supporting their
programming projects. This includes both technical documentation targeting a peer audience, and user
documentation targeting those using the software the student develops. The technical documentation
describes the problem to be solved, the scope of the project, an overview of the solution, and any
limitations of the solution. The user documentation is primarily instructional.

Reading Assignments:
Students complete weekly reading assignments from the course textbook and reference online C++
language website references.

Other Outside Assignments:
Textbook exercises and weekly programming assignments comprise the majority of the out-of-class
assignments. At least one of the programming assignments is a small-group project to provide experience
in a realistic program development environment. Specifically, the intent is to provide an opportunity for
students to improve their communication skills and learn to work in a cooperative environment. Faculty
may also use "pair-programming" to provide the "real world" development environment.

In addition to lab assignments (described in lab content section), students complete medium size projects:

Project 1 - application which reviews memory management, control structures, and user interface skills
from previous course. Includes C++ iostream I/O and namespaces.

Project 2 - application which utilizes both C++ predefined functions and user defined functions

Project 3 - application which employs a partially filled array to store data for a non-trivial problem;
C-string technique also required

Project 4 - create a C++ class including overloaded constructors, default arguments, mutators, accessors,
worker functions and output functions. Application to use class also required.

Project 5 - create a C++ class together with member and non-member operator overloads of binary and
unary operators. String class usage included. Application to use class also required.

Project 6 - create a C++ class with dynamic array member variable, overload and override functions and
derive a simple class from this base class. Application to use class also required.

Project 7 - code a C++ abstract class with at least 2 derived classes, and an application which requires
storing objects of base type in an array

Project 8 - code a C++ template class and utilize instances of this class in an application which requires
exception handling and file I/O for data persistence.

8.

REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:

Class ParticipationA.
Exams/TestsB.
Group ProjectsC.
Lab ActivitiesD.
ProjectsE.
QuizzesF.
Assessment of student contributions during class discussion and project time; Individual programmingG.

9.

assignments;
Midterm and Final exams: short answers from textbook material, general problem solving (similar to
in-class work), short program segments (similar to programming assignments);
Assessment of group participation on course projects, including peer-assessment of participation and
contribution to the group effort.

REPRESENTATIVE TEXT(S):
Possible textbooks include:

Stroustrup. A Tour of C++, 2nd ed. Addison-Wesley Professional, 2018A.
Deitel & Deitel. C++: How To Program, 10th ed. Pearson, 2016B.
Lospinoso. C++ Crash Course, 1st ed. No Starch Press, 2019C.
Murach. Murach's C++ Programming, 1st ed. Murach, 2018D.

10.

Origination Date: October 2018
Curriculum Committee Approval Date: November 2018

Effective Term: Fall 2019
Course Originator: Melissa Green

