
College of San Mateo
Official Course Outline

COURSE ID: CIS 264 TITLE: Computer Organization and Systems Programming C-ID: COMP 142
Units: 4.0 units Hours/Semester: 48.0-54.0 Lecture hours; 48.0-54.0 Lab hours; and 96.0-108.0 Homework
hours
Method of Grading: Grade Option (Letter Grade or Pass/No Pass)
Prerequisite: MATH 120, and CIS 254, or CIS 278

1.

COURSE DESIGNATION:
Degree Credit
Transfer credit: CSU; UC
AA/AS Degree Requirements:

CSM - COMPETENCY REQUIREMENTS: C1 Math/Quantitative Reasoning Basic Competency

2.

COURSE DESCRIPTIONS:
Catalog Description:

The internal organization and operation of digital computers. Systems programming in C. Assembly
languages, machine architecture, support for high-level languages (logic, arithmetic, instruction
sequencing) and operating systems (I/O, interrupts, memory management, process switching). Elements of
computer logic design. Tradeoffs involved in fundamental architectural design decisions.

3.

STUDENT LEARNING OUTCOME(S) (SLO'S):
Upon successful completion of this course, a student will meet the following outcomes:

Write and debug assembly programs that use load/store, arithmetic, logic, branches, call/return and
push/pop instructions.

1.

Demonstrate how fundamental high-level programming constructs are implemented at the
machine-language level.

2.

Write C programs involving Pointers, Arrays, Strings and demonstrate C Memory Management.3.
Demonstrate how caching works in computer systems.4.
Explain Compilation, Linking and Loading processes, Thread-Level Parallelism, Pipelining and Virtual
Memory.

5.

4.

SPECIFIC INSTRUCTIONAL OBJECTIVES:
Upon successful completion of this course, a student will be able to:

Perform arithmetic on twos-complement integer data, expressing result in binary, hex and signed decimal. 1.
Code execute and debug assembly language programs using a target instruction set. 2.
Program selection and repetition constructs, procedures and macros in assembly language. 3.
Demonstrate parameter passing mechanisms and linkage to both external assembly language modules and
higher-level language modules.

4.

Enumerate the steps used to translate a compiled higher-level language to a functioning executable
program.

5.

Code C programs involving Pointers, Arrays and Strings. 6.
Understand C Memory Management.7.
Understand Cache Memory, Virtual Memory and address translation.8.
Understand Compilation, Linking, and Loading a program in Computer Systems.9.
Understand Thread-Level Parallelism. 10.
Describe Synchronous Digital Systems and Combinational Logic Design. 11.

5.

COURSE CONTENT:
Lecture Content:

Number Representation and Floating point1.
Basic computer organization of von Neumann machines2.
Control unit: instruction fetch, decode, and execution3.
Instruction Sets and types (data manipulation, control, and I/O)4.
C programing, pointer, arrays and C memory management5.
Assembler/Linker6.
Assembly/machine languages programming7.
SIMD Instructions.8.
Assembly Function/procedure calls and return mechanisms9.
I/O and interrupts10.
Cache Memory11.

6.

Virtual Memory12.
Compilation, Assembly, Linking and Loading13.
Thread-Level parallelism14.
Introduction to Synchronous Digital Systems15.
Combinational Logic Design16.
Single-Cycle CPU Datapath17.
Pipelining18.

Lab Content:

 1-Working with instructions involving different size registers (AH, AX, AL, EAX for example) and using
the debugger to step through the instructions
2- Defining and initializing various variable types (byte, word, dword, text string, and array)
3- Converting C program to Assembly
4- Branching in Assembly
5- Using shift, rotate, and the bitwise and, or, not, xor
6- Accessing data by address
7- Working with procedure both when input arguments are in registers or on the stack
8- Working with two dimensional array in Assembly
9- Pointers and Arrays in C
10- Memory allocation in C
11- Void Pointer and Function Pointer in C
12- Embedding Assembly in C
13- Optimizing program performance
14- Running program on a system; Linking. Exception Control Flow and Virtual Memory
15- Interaction and communication between programs
16- Socket programming

REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:

Lecture A.
Lab B.
Activity C.
Discussion D.
Guest Speakers E.
Other (Specify): In-class group projects. F.

7.

REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:
Writing Assignments:

All programming projects (below) will be fully documented to allow clarity to the reader.
Reading Assignments:

Students will read all chapters of the required textbook, readings parallel current project and lecture content.
Other Outside Assignments:

There will be 8 programming assignments.
PROJECT 1 Number conversion worksheet, covering binary, octal, hex representations, and 2's
complement arithmetic. High level program which converts decimal input to another base of choice.

PROJECT 2 Sequential instruction programming project which utilizes arithmetic instructions.

PROJECT 3 Programming project which utilizes jump instructions to build conditional structures.

PROJECT 4 Programming project which utilizes looping structures, direct and indirect addressing.

PROJECT 5 Programming project requiring at least one procedure definition/call, one function
definition/call and a macro.

PROJECT 6 Programming project using array storage for a numeric type, involving search, update and
output of collection.

PROJECT 7 Programming project involving string input, parsing and character type conversion.

PROJECT 8 Final non-trivial team project, satisfying all objectives of previous projects.

8.

PROJECT 8 Final non-trivial team project, satisfying all objectives of previous projects.

REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:

Class ParticipationA.
Class PerformanceB.
Class WorkC.
Exams/TestsD.
Group ProjectsE.
HomeworkF.
Lab ActivitiesG.
ProjectsH.
QuizzesI.

9.

REPRESENTATIVE TEXT(S):
Possible textbooks include:

Bryant, Randal E.. Computer Systems, A programmer's Perspective Paperback, Third ed. Pearson, 2018A.
David Patterson. Computer Organization and Design RISC-V edition, 2 ed. Morgan Kaufmann, 2020B.
Harris, Sarah and Harris, David. Digital Design and Computer Architecture Risc-V edition, 1 ed.
Elsevier/Morgan Kaufmann,, 2021

C.

Kernighan, Brian and Ritchie, Dennis. The C Programming Language, 2 ed. Prentice Hall, 1988D.
Null, Linda, and Julia Lobur. The Essentials of Computer Organization and Architecture, 5 ed. Burlington,
MA: Jones & Bartlett, 2018

E.

10.

Origination Date: October 2021
Curriculum Committee Approval Date: November 2021

Effective Term: Fall 2022
Course Originator: Kamran Eftekhari

