1. **COURSE ID:** CIS 135
TITLE: Android Programming
Units: 4.0 units
Hours/Semester: 48.0-54.0 Lecture hours; and 48.0-54.0 Lab hours
Method of Grading: Grade Option (Letter Grade or P/NP)
Recommended Preparation:
Eligibility for ENGL 838 or ENGL 848
CIS 254

2. **COURSE DESIGNATION:**
Degree Credit
Transfer credit: CSU
AA/AS Degree Requirements:
CSM - GENERAL EDUCATION REQUIREMENTS: E2c.Communication and Analytical Thinking

3. **COURSE DESCRIPTIONS:**
Catalog Description:
Introduction to the architecture, API and techniques used to create robust, high-performance applications for Android mobile devices. An overview of the most common tools and techniques for writing Android applications. Other topics include user interfaces, local storage, maps, multimedia, content providers, sensors, and user events. Storage strategies for persistent information are introduced, including the use of SQLite database features. Intended for students with previous Java programming experience.

4. **STUDENT LEARNING OUTCOME(S) (SLO'S):**
Upon successful completion of this course, a student will meet the following outcomes:
1. Explain the Android OS architecture.
2. Install and use appropriate tools for Android development, including IDE, device emulator, and profiling tools.
3. Build user interfaces with fragments, views, form widgets, text input, lists, tables, and menus.
4. Employ advanced UI widgets for scrolling, tabbing, and layout control.
5. Store application data on the mobile device, in internal or external storage locations.
6. Create an advanced mobile application employing sensors, maps, and other features.

5. **SPECIFIC INSTRUCTIONAL OBJECTIVES:**
Upon successful completion of this course, a student will be able to:
1. Explain the Android OS architecture.
2. Install and use appropriate tools for Android development, including IDE, device emulator, and profiling tools.
3. Build user interfaces with fragments, views, form widgets, text input, lists, tables, and menus.
4. Employ advanced UI widgets for scrolling, tabbing, and layout control.
5. Store application data on the mobile device, in internal or external storage locations.
6. Create an advanced mobile application employing sensors, maps, and other features.

6. **COURSE CONTENT:**
Lecture Content:
1. Android Overview and History
 - Origin of Android
 - Importance of Android
 - Relationship of Java and Android
2. Android Stack
 - Overview of the stack
 - Linux kernel
 - Native libraries
 - DalvikApp framework
 - Apps
3. SDK Overview
 - Platforms
 - Tools
4. Creating an App
 - The manifest file
 - Layout resource
 - Running an app on the Emulator

5. Main Building Blocks
 - Activities
 - Activity lifecycle
 - Intents
 - Services
 - Content Providers
 - Broadcast Receivers

6. Basic Android User Interface
 - XML versus Java UI
 - Dips and sps
 - Views and layouts
 - Common UI components
 - Handling user events

7. Android System Overview
 - File System
 - Preferences
 - Notifications
 - Security model

8. Advanced UI
 - Selection components
 - Adapters
 - Complex UI components
 - Building UI for performance
 - Menus and Dialogs
 - Graphics & animations

9. Multimedia in Android
 - Multimedia Supported audio formats
 - Simple media playback
 - Supported video formats
 - Simple video playback

10. SQL Database
 - Introducing SQLite
 - SQLiteOpenHelper and creating a database
 - Opening and closing a database
 - Working with cursors
 - Inserts, updates, and deletes

11. Basic Content Providers
 - Content provider MIME types
 - Searching for content
 - Adding, changing, and removing content
 - Working with content files

12. Advanced Topics
 - XML Parsing
 - JSON Parsing
 - Fragment API
 - Including external libraries in an application
 - Maps via intent and MapActivity
 - Network connectivity services
 - Sensors, Camera
 - Using Wi-Fi & Bluetooth
 - Testing
 - Threads
 - Web Apps

Lab Content:
1. App Widgets
2. The Android Manifest
3. User Interface
4. App Resources
5. Animation and Graphics
6. Computation
7. Handle User Events
8. Create Menus and Dialogs
9. Media
10. Connectivity
11. Text and Input
12. Create and Use Data Storage
13. SQLite Database
14. Local Storage
15. Administration and Testing
16. Web Apps

7. REPRESENTATIVE METHODS OF INSTRUCTION:
 Typical methods of instruction may include:
 A. Lecture
 B. Lab
 C. Activity
 D. Discussion
 E. Observation and Demonstration
 F. Other (Specify): • Student reading of textbooks and supplemental course materials • Individual and team programming projects • Review of subject matter videos

8. REPRESENTATIVE ASSIGNMENTS
 Representative assignments in this course may include, but are not limited to the following:

 Writing Assignments:
 Students will complete and submit exercises and programming assignments on a weekly or biweekly basis.

 Reading Assignments:
 Students will read assigned chapters in the textbook and supplemental handouts.

9. REPRESENTATIVE METHODS OF EVALUATION
 Representative methods of evaluation may include:
 A. Class Work
 B. Exams/Tests
 C. Group Projects
 D. Homework
 E. Lab Activities
 F. Projects
 G. Quizzes
 H. Written examination

10. REPRESENTATIVE TEXT(S):
 Possible textbooks include:

 Origination Date: November 2015
 Curriculum Committee Approval Date: January 2016
 Effective Term: Fall 2016
 Course Originator: Melissa Green