
College of San Mateo
Official Course Outline

COURSE ID: CIS 135 TITLE: Android Programming
Units: 4.0 units Hours/Semester: 48.0-54.0 Lecture hours; 48.0-54.0 Lab hours; and 96.0-108.0 Homework
hours
Method of Grading: Grade Option (Letter Grade or Pass/No Pass)
Recommended Preparation:

CIS 254

1.

COURSE DESIGNATION:
Degree Credit
Transfer credit: CSU; UC
AA/AS Degree Requirements:

CSM - GENERAL EDUCATION REQUIREMENTS: E2b. Communication and Analytical Thinking

2.

COURSE DESCRIPTIONS:
Catalog Description:

Introduction to the architecture, API and techniques used to create robust, high-performance applications
for Android mobile devices. An overview of the most common tools and techniques for writing Android
applications. Other topics include user interfaces, local storage, maps, multimedia, content providers,
sensors, and user events. Storage strategies for persistent information are introduced, including the use of
SQLite database features. Introduction to Kotlin programming. Intended for students with previous Java
programming experience.

3.

STUDENT LEARNING OUTCOME(S) (SLO'S):
Upon successful completion of this course, a student will meet the following outcomes:

Explain the Android OS architecture.1.
Install and use appropriate tools for Android development, including IDE, device emulator, and profiling
tools.

2.

Build user interfaces with fragments, views, form widgets, text input, lists, tables, and menus.3.
Employ advanced UI widgets for scrolling, tabbing, and layout control.4.
Store application data on the mobile device, in internal or external storage locations.5.
Create an advanced mobile application employing sensors, maps, and other features.6.

4.

SPECIFIC INSTRUCTIONAL OBJECTIVES:
Upon successful completion of this course, a student will be able to:

Explain the Android OS architecture.1.
Install and use appropriate tools for Android development, including IDE, device emulator, and profiling
tools.

2.

Build user interfaces with fragments, views, form widgets, text input, lists, tables, and menus.3.
Employ advanced UI widgets for scrolling, tabbing, and layout control.4.
Store application data on the mobile device, in internal or external storage locations.5.
Create an advanced mobile application employing sensors, maps, and other features.6.

5.

COURSE CONTENT:
Lecture Content:

Android Overview and History
Origin of Android
Importance of Android
Relationship of Java and Android

1.

Android Stack
Overview of the stack
Linux kernel
Native libraries
DalvikApp framework
Apps

2.

SDK Overview
Platforms
Tools

3.

6.

Tools
Versions

Creating an App
The manifest file
Layout resource
Running an app on the Emulator

4.

Main Building Blocks
Activities
Activity lifecycle
Intents
Services
Content Providers
Broadcast Receivers

5.

Basic Android User Interface
XML versus Java UI
Dips and sps
Views and layouts
Common UI components
Handling user events

6.

Android System Overview
File System
Preferences
Notifications
Security model

7.

Advanced UI
Selection components
Adapters
Complex UI components
Building UI for performance
Menus and Dialogs
Graphics & animations

8.

Multimedia in Android
Multimedia Supported audio formats
Simple media playback
Supported video formats
Simple video playback

9.

SQL Database
Introducing SQLite
SQLiteOpenHelper and creating a database
Opening and closing a database
Working with cursors
Inserts, updates, and deletes

10.

Basic Content Providers
Content provider MIME types
Searching for content
Adding, changing, and removing content
Working with content files

11.

Advanced Topics
XML Parsing
JSON Parsing
Fragment API
Including external libraries in an application
Maps via intent and MapActivity
Network connectivity services
Sensors, Camera
Using Wi-Fi & Bluetooth
Testing
Threads
Web Apps
Introduction to Kotlin programming

12.

Lab Content:

App Widgets1.
The Android Manifest 2.
User Interface 3.
App Resources4.
Animation and Graphics 5.
Computation6.
Handle User Events 7.
Create Menus and Dialogs8.
Media 9.
Connectivity 10.
Text and Input11.
Create and Use Data Storage12.
SQLite Database13.
Local Storage 14.
Administration and Testing 15.
Web Apps16.
Kotlin Programming17.

REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:

Lecture A.
Lab B.
Activity C.
Discussion D.
Observation and Demonstration E.
Other (Specify): • Student reading of textbooks and supplemental course materials • Individual and team
programming projects • Review of subject matter videos

F.

7.

REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:
Writing Assignments:

Students will complete and submit exercises and programming assignments on a weekly or biweekly
basis. Assignments will cover:
App WidgetsA.
The Android Manifest B.
User Interface C.
App ResourcesD.
Animation and Graphics E.
ComputationF.
User Events G.
Menus and DialogsH.
Media I.
Connectivity J.
Text and InputK.
Create and Use Data StorageL.
SQLite DatabaseM.
Local Storage N.
Administration and Testing O.
Web AppsP.
Kotlin ProgrammingQ.

Reading Assignments:
Students will read assigned chapters in the textbook and supplemental handouts.

8.

REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:

Class WorkA.
Exams/TestsB.
Group ProjectsC.

9.

HomeworkD.
Lab ActivitiesE.
ProjectsF.
QuizzesG.
Written examinationH.

REPRESENTATIVE TEXT(S):
Possible textbooks include:

Smyth, N. Android Studio 3.6 Development Essentials Kotlin Edition, 2nd ed. Payload Media, 2020A.
Marsicano, K. and Gardner, B. Android Programming: The Big Nerd Ranch Guide, 4th ed. Big Nerd
Ranch Guides, 2019

B.

Horton, J. Android Programming with Kotlin for Beginners, 1st ed. Packt, 2019C.

10.

Origination Date: November 2020
Curriculum Committee Approval Date: November 2020

Effective Term: Fall 2021
Course Originator: Melissa Green

