College of San Mateo
Official Course Outline

1. COURSE ID: CIS 128 TITLE: Mobile Web App Development
 Units: 4.0 units Hours/Semester: 48.0-54.0 Lecture hours; 48.0-54.0 Lab hours; and 96.0-108.0 Homework hours
 Method of Grading: Grade Option (Letter Grade or P/NP)
 Recommended Preparation:
 - Eligibility for ENGL 838 or ENGL 848
 - Eligibility for ESL 400, Completion of CIS 111 or CIS 254.

2. COURSE DESIGNATION:
 Degree Credit
 Transfer credit: CSU; UC

3. COURSE DESCRIPTIONS:
 Catalog Description:
 Employ HTML5, CSS and JavaScript to develop mobile web apps for smart phones and tablet/pad devices. Topics include CSS media queries, mobile user interfaces, platform-independent development, and best practices. Also covers geolocation, maps, audio, video, drawing, animation and offline apps. Provides an introduction to open-source mobile development frameworks, emulators, conversion to native apps, performance and testing. Intended for students with previous programming experience.

4. STUDENT LEARNING OUTCOME(S) (SLO'S):
 Upon successful completion of this course, a student will meet the following outcomes:
 1. Define and identify the types and uses of various mobile devices, including smart phones and tablets/pads.
 2. Design and create web applications for display on a variety of mobile devices and screens.
 3. Apply appropriate user-interface design techniques and standards to create intuitive and effective designs.
 4. Use media queries to optimize sites for display on different-sized devices.
 5. Create cache manifests to make applications available offline.
 6. Package a web application built with HTML5, CSS and JavaScript for deployment as a native app on Android or iOS using a mobile framework such as PhoneGap.

5. SPECIFIC INSTRUCTIONAL OBJECTIVES:
 Upon successful completion of this course, a student will be able to:
 1. Define and identify the types and uses of various mobile devices, including smart phones and tablets/pads.
 2. Design and create web applications for display on a variety of mobile devices and screens.
 3. Apply appropriate user-interface design techniques and standards to create intuitive and effective designs.
 4. Use media queries to optimize sites for display on different-sized devices.
 5. Create cache manifests to make applications available offline.
 6. Package a web application built with HTML5, CSS and JavaScript for deployment as a native app on Android or iOS using a mobile framework such as PhoneGap.

6. COURSE CONTENT:
 Lecture Content:
 1. Introduction to mobile platforms and devices
 2. HTML5 markup
 3. CSS overview
 4. JavaScript variables, functions, arrays and objects
 5. JavaScript and the Document Object Model (DOM)
 6. Events and event handlers
 7. CSS media queries
 8. Mobile user interface design
 9. HTML5 geolocation and maps
 10. HTML5 audio and video API
 11. HTML5 drawing and animation API
 12. Mobile emulators
 13. Offline applications with cache manifest
 14. Performance and testing
 15. Mobile development frameworks
 16. Best practices
 17. Converting web apps to native apps using a mobile framework.
 Lab Content:
 1. Develop simple mobile web apps using HTML5, CSS and JavaScript
2. Test web apps using mobile devices and emulators
3. Create mobile web apps using mobile development frameworks
4. Employ HTML5 audio and video in mobile web apps
5. Create mobile web apps that draw and animate using the HTML5 API
6. Use developer tools to examine the performance of mobile web apps
7. Deploy a mobile web app as a native app using a mobile development frameworks such as PhoneGap

7. REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:
A. Lecture
B. Lab
C. Activity
D. Directed Study
E. Discussion
F. Other (Specify): • Student reading of textbooks and supplemental course materials • Individual and team programming projects • Review of subject matter videos

8. REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:
Writing Assignments:
Students will complete and submit exercises and programming assignments on a weekly or biweekly basis.
Reading Assignments:
Students will read assigned chapters in the textbook and supplemental handouts.

9. REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:
A. Exams/Tests
B. Group Projects
C. Homework
D. Lab Activities
E. Projects
F. Quizzes
G. Written examination

10. REPRESENTATIVE TEXT(S):
Possible textbooks include:

Origination Date: September 2016
Curriculum Committee Approval Date: October 2016
Effective Term: Fall 2017
Course Originator: Melissa Green