1. **COURSE ID:** CIS 111
 TITLE: Introduction to Web Programming
 Units: 3.0 units
 Hours/Semester: 48.0-54.0 Lecture hours; and 96.0-108.0 Homework hours
 Method of Grading: Grade Option (Letter Grade or P/NP)
 Recommended Preparation:
 - Eligibility for ENGL 838 or ENGL 848
 - Eligibility for ESL 400

2. **COURSE DESIGNATION:**
 - Degree Credit
 - **Transfer credit:** CSU; UC

3. **COURSE DESCRIPTIONS:**
 Catalog Description:
 This course provides an introduction to the World Wide Web and Web programming. Basic HTML and CSS will be introduced, as well as client-side scripting in JavaScript using variables, functions, and objects. Introduces programming with HTML, CSS, JavaScript, and the DOM (Document Object Model). Server-side scripting languages such as ASP, JSP, Python, Perl and/or PHP will be demonstrated. Introduces Web 2.0 topics, such as Ajax, Web Services, and HTML5.

4. **STUDENT LEARNING OUTCOME(S) (SLO'S):**
 Upon successful completion of this course, a student will meet the following outcomes:
 1. Explain basic internet concepts and technologies.
 2. Create HTML and HTML5 documents.
 3. Create Cascading Style Sheets (CSS) to format HTML and HTML5 documents.
 4. Write simple client-side JavaScript programs employing variables, conditional statements, and control structures.
 5. Develop HTML and HTML5 Web applications employing the Document Object Model (DOM), CSS, and JavaScript.
 6. Explain server-side scripting concepts and languages.
 7. Create a Web 2.0 application employing Ajax.

5. **SPECIFIC INSTRUCTIONAL OBJECTIVES:**
 Upon successful completion of this course, a student will be able to:
 1. Explain basic internet concepts and technologies.
 2. Create HTML and HTML5 documents.
 3. Create Cascading Style Sheets (CSS) to format HTML and HTML5 documents.
 4. Write simple client-side JavaScript programs employing variables, conditional statements, and control structures.
 5. Develop HTML and HTML5 Web applications employing the Document Object Model (DOM), CSS, and JavaScript.
 6. Explain server-side scripting concepts and languages.
 7. Create a Web 2.0 application employing Ajax.

6. **COURSE CONTENT:**
 Lecture Content:
 1. Introduction to internet and WWW concepts and protocols.
 2. HTML and HTML5 elements.
 3. Cascading Style Sheets (CSS) (external and internal).
 4. JavaScript data types, variables, constants, and operators.
 5. JavaScript conditional statements and control structures.
 6. JavaScript functions, arrays, and objects.
 7. JavaScript events and event handlers.
 9. Introduction to server-side scripting languages.
 10. Web 2.0 concepts, including Ajax libraries and frameworks, and Web Services.
 Lab Content:
 Students will complete lab exercises and write programs that reinforce the lecture material.
Students will complete lab exercises and write programs that reinforce the lecture material.
1. Utilize HTML and JavaScript to create client-side programs.
2. Employ variables, arrays and control structures in JavaScript programs.
3. Write JavaScript programs that respond to events.
4. Develop HTML and HTML5 Web applications employing the Document Object Model (DOM), CSS, and JavaScript.
5. Test server-side programs that use languages such as ASP, JSP, Python, Perl and PHP.
6. Create a Web-based Ajax program using a framework such as jQuery.

7. REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:
 A. Lecture
 B. Lab
 C. Directed Study
 D. Discussion
 E. Observation and Demonstration
 F. Other (Specify): The course will include the following instructional methods as determined appropriate by the instructor, in approximately the following order: Lecture will be used to introduce new topics; Instructor will create and manage an internet forum for discussion of course topics; Instructor will model problem-solving techniques; Instructor will provide demonstrations of current internet programming techniques; Class will apply methodologies in class to solve a problem together; Students will participate in an ongoing large project in instructor-organized small groups; Instructor will invite questions AND ANSWERS from students, generating discussion about areas of misunderstanding; Students will give individual presentations of outside readings or final project area.

8. REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:
 Writing Assignments:
 Students will complete and submit exercises and programming assignments on a weekly basis.
 Reading Assignments:
 Students are required to read assigned chapters in the textbook.

9. REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:
 A. Class Participation
 B. Exams/Tests
 C. Group Projects
 D. Homework
 E. Lab Activities
 F. Projects
 G. Quizzes
 H. Written examination
 I. Weekly textbook readings and textbook exercises comprise one portion of the out-of-class assignments. Assessment of student contributions during discussion time. Hands on lab assignments utilize and reinforce programming techniques. Midterm and final exams provide additional assessment of learning outcomes.

10. REPRESENTATIVE TEXT(S):
Possible textbooks include:

Origination Date: September 2016
Curriculum Committee Approval Date: October 2016
Effective Term: Fall 2017
Course Originator: Melissa Green