College of San Mateo
Official Course Outline

1. TITLE: BIOL 240 - General Microbiology
 Semester Units/Hours: 4.0 units; a minimum of 48.0 lecture hours/semester; a minimum of 48.0 lab hours/semester; a minimum of 16.0 tba hours/semester
 Method of Grading: Letter Grade Only
 Prerequisite: A college level biology course with a lab AND a college level chemistry course with a lab. This includes BIOL 110, 210, 220, 230, 250, 260, BIOL 130 with 132 (lab), 225 (Canada), OR BIOL 215 (Skyline), AND CHEM 192, 210, or 410.
 Recommended Preparation:
 Eligibility for MATH 110 or 111

2. COURSE DESIGNATION:
 Degree Credit
 Transfer credit: UC; CSU

3. COURSE DESCRIPTIONS:
 Catalog Description:
 Minimum 48 lecture hours and 48 lab hours plus 16 hours by arrangement per term.
 Introduction to the morphology, physiology, and genetics of microorganisms, with emphasis on bacteria and viruses. Includes environmental, applied microbiology, and the role of bacteria and viruses in health and disease. Laboratory work consists of isolation, cultivation, and identification of bacteria and techniques used to demonstrate microbial properties; including serological methods and bioinformatics. (Recommended for students majoring in life science, physical science, health science, and nursing). One or more field trips may be required.

4. STUDENT LEARNING OUTCOMES (SLO'S):
 Upon successful completion of this course, a student will meet the following outcomes:
 1. Describe or demonstrate an understanding of Taxonomy and Phylogeny of microorganisms and their relationship to human health and the environment.
 2. Demonstrate an understanding of the cell structure, genetic and metabolic characteristics and ecology of the various groups of microbes.
 3. Demonstrate mastery of laboratory techniques appropriate to microbiology and ability to organize qualitative and quantitative data into a laboratory report.
 4. Describe how the scientific method relates to the study and understanding of microbiology historically and in modern day applications.
 5. Demonstrate a knowledge of industrial, biotechnological and clinical applications of microbiology.

5. SPECIFIC INSTRUCTIONAL OBJECTIVES:
 Upon successful completion of this course, a student will be able to:
 A. Course objectives are the same as the course SLOs.

6. COURSE CONTENT:
 Lecture Content:
 A. Introduction to microbiology; a historical perspective and foundational scientists and their technological and conceptual advances.
 B. Basic chemistry of life and cell structure, biomacromolecules; carbohydrates, lipids, proteins, nucleic acids, ATP
 D. Classification and Systematics of microbes.
 E. Requirements of microbial growth, patterns and quantification of growth and cultivation of microbes.
 F. Enzyme function, cell metabolism, energy requirements and carbon sources.
G. Physical and chemical means of controlling microbial growth, sterilization, disinfection and antibiotics.

H. Microbial genetics:
 1. The central dogma, DNA structure, replication, transcription, translation.
 2. Horizontal and vertical gene transfer.
 3. Mutations.
 4. Viruses.
 5. Metabolic regulation.

I. Biotechnology, recombinant DNA technology, DNA fingerprinting and Bioinformatics.

J. Host-microbiol relationship; benefical and pathogenic.

K. Immune Response to infection. Innate and acquired immunity and immunization,

L. Infectious disease of various body systems, disease transmission, virulence and infectivity.

M. Epidemiology and public health

Lab Content:

1. Microscopy and staining
2. Aseptic technique
3. Sampling and culturing bacteria and isolation of bacteria to pure culture
4. Growth requirements, metabolic and biochemical assays
5. Identification of bacteria
6. Bioinformatics
7. Quantification of bacteria
8. Food safety, pasteurization
9. Growth control, antimicrobial and antibiotic testing
10. Immunoassays

TBA Hours Content:

Students must complete an average of 1 hour per week (8 hours by the mid-point of the semester and an additional 8 hours by the end of the semester) in the Microbiology Lab and the Integrated Science Center. The following activities and content are covered during the TBA hours.

1. Theory and practice of microscopy and staining.
2. Culturing of bacteria.
3. Biochemical and metabolic and growth assays.
4. Computer work to identify bacteria.
5. Computer work to perform bioinformatics.

• REPRESENTATIVE METHODS OF INSTRUCTION:
Typical methods of instruction may include:

1. Lecture
2. Lab
3. Activity
4. Critique
5. Directed Study
6. Discussion
7. Experiments
8. Individualized Instruction
9. Observation and Demonstration
10. Other (Specify): · A lecture format is used to introduce new concepts and information. Time is provided to encourage student participation and discussion in question and answer periods. · The theory, purpose and practice of lab experiments will be outlined by the instructor. Students will perform experiments individually, in pairs or as assigned groups
with 4 to 5 members. • Experimental data that is collected is shared with the class for evaluation and analysis. • Where appropriate, selected topics will be complemented by videos. TBA will be lab focused consisting of microscopy and staining practice, collecting results from biochemical and metabolic assays, computer work using software to identify bacteria and NCBI an similar software to perform bioinformatics exercises. HBA will take place in the microbiology lab room, supervised by a microbiology instructor and in the integrated science center supervised by a science faculty.

REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:

1. Writing Assignments:
 A. Written short essay on regular exams
 B. Lab reports summarizing lab experiments, organizing qualitative and quantitative data and results with references to published literature.
 C. Study guides for each exam are written as a group project.
 D. Maintaining a detailed lab notebook.

2. Reading Assignments:
 A. Textbook and laboratory manual reading assignments.
 B. Background material from legitimate sources for lab reports.

3. Other Outside Assignments:
 A. Reading, study, internet and library research.
 B. Analyzing and interpreting lab data and results.
 C. Organizing group presentations and reports.

REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:

1. Class Participation
2. Exams/Tests
3. Group Projects
4. Home Work
5. Lab Activities
6. Oral Presentation
7. Papers
8. Projects
9. Quizzes
10. Written examination
11. • Exams covering chapters of the text. (Multiple choice, matching, short essay questions)
 • Online homework and quizzes
 • Lab reports
 • Several group projects that include participation, oral presentations and written reports.

REPRESENTATIVE TEXT(S):
Possible textbooks include:

Possible manuals include:

Michael J. Leboffe and Burton E. Pierce. Microbiology Laboratory Theory and Application, brief, 2nd edition, Morton, 01-01-2008

Possible software includes:

The program has three major functions: 1. the identification of an unknown isolate 2. the selection of additional tests to distinguish between possible strains if identification is not achieved 3. the storage and retrieval of results
The Biology WorkBench is a web-based tool for biologists. The WorkBench allows biologists to search many popular protein and nucleic acid sequence databases. Database searching is integrated with access to a wide variety of analysis and modeling tools, all within a point and click interface that eliminates file format compatibility problems.

Other:
Laboratory text: T.R. Johnson, C.L. Case, Laboratory Experiments in Microbiology, 10th edition, Benjamin Cummings, 2012

Origination Date: August 2010
Curriculum Committee Approval Date: April 2012
Course Originator: Christopher Smith