1. **COURSE ID:** BIOL 220
TITLE: General Botany
C-ID: BIOL 210+220 = BIOL 130S

Units: 5.0 units
Hours/Semester: 48.0-54.0 Lecture hours; 96.0-108.0 Lab hours; and 96.0-108.0 Homework hours

Method of Grading: Letter Grade Only

Prerequisite: MATH 120, or MATH 123

Recommended Preparation:
- READ 830, and concurrent enrollment in any READ 400 level course; BIOL 110, or BIOL 195 or equivalent biology course with lab and CHEM 192, or CHEM 210 or CHEM 410 or equivalent chemistry course with a lab

2. **COURSE DESIGNATION:**

Degree Credit

Transfer credit: CSU; UC

AA/AS Degree Requirements:
- CSM - GENERAL EDUCATION REQUIREMENTS: E5a. Natural Science

CSU GE:
- CSU GE Area B: SCIENTIFIC INQUIRY AND QUANTITATIVE REASONING: B2 - Life Science
- CSU GE Area B: SCIENTIFIC INQUIRY AND QUANTITATIVE REASONING: B3 - Laboratory Activity

IGETC:
- IGETC Area 5: PHYSICAL AND BIOLOGICAL SCIENCES: B: Biological Science
- IGETC Area 5: PHYSICAL AND BIOLOGICAL SCIENCES: C: Science Laboratory

3. **COURSE DESCRIPTIONS:**

Catalog Description:
Principles of biology as illustrated by plants with emphasis on structure, physiology, evolution, comparative diversity, and reproduction in plants, fungal, and protistan phyla. One or more field trips may be required. Extra supplies may be required. A materials fee as shown in the Schedule of Classes is payable upon registration.

4. **STUDENT LEARNING OUTCOME(S) (SLO'S):**

Upon successful completion of this course, a student will meet the following outcomes:

1. Demonstrate an understanding of the characteristics, structural organization, developmental processes, and function of plants.
2. Identify and describe plant structures and relate them to their functions, including transpiration, photosynthetic pathways, and energy and nutrient acquisition.
3. Demonstrate an understanding of life cycles within and among major plant, fungal, and photosynthetic protist taxa.
4. Provide evidence for evolution, construct and interpret phylogenetic relationships of major groups of plants, fungal, and photosynthetic protist taxa.
5. Demonstrate an understanding of how organisms are organized into and interact within and among populations and communities.
6. Describe the processes that occur within ecosystems including energy flow, and the role of nutrient cycling in maintaining ecosystem integrity.
7. Perform, document, and analyze scientific experiments, and apply critical thinking and scientific reasoning skills.
8. Demonstrate proficiency in the use of the compound microscope in the examination of cells, tissues, and organs, in plants, fungal, and photosynthetic protist taxa.

5. **SPECIFIC INSTRUCTIONAL OBJECTIVES:**

Upon successful completion of this course, a student will be able to:

1. Demonstrate an understanding of the characteristics, structural organization, developmental processes, and function of plants.
2. Identify and describe plant structures and relate them to their functions, including transpiration, photosynthetic pathways, and energy and nutrient acquisition.
3. Demonstrate an understanding of life cycles within and among major plant, fungal, and photosynthetic protist taxa.
prokaryotic taxa.
4. Provide evidence for evolution, construct and interpret phylogenetic relationships of major groups of plants, fungal, and photosynthetic protist taxa.
5. Demonstrate an understanding of how organisms are organized into and interact within and among populations and communities.
6. Describe the processes that occur within ecosystems including energy flow, and the role of nutrient cycling in maintaining ecosystem integrity.
7. Perform, document, and analyze scientific experiments, and apply critical thinking and scientific reasoning skills.
8. Demonstrate proficiency in the use of the compound microscope in the examination of cells, tissues, and organs, in plants, fungal, and photosynthetic protist taxa.

6. COURSE CONTENT:
 Lecture Content:
 What is plant biology? (SLOs 1, 6)
 The relationship of humans to their environment
 Human and animal dependence on plants
 Scientific experimentation and plant science inquiry
 The nature of plant life (SLO 1)
 Attributes of living organisms
 Chemical and physical basis of life
 Chemical components of cells
 Plant cells and tissues (SLOs 1, 2, 8)
 Plant cellular structure and cell components
 Plastids and vacuoles
 Cell membranes and the cell wall
 Cellular reproduction and cell cycle
 Meristems
 Simple and complex tissues
 Leaves, Stems, and Roots (SLOs 1, 2, 5, 8)
 Leaf arrangement and types
 Internal structure of leaves
 Stomata, mesophyll, and veins
 Specialized leaves
 Autumnal changes in leaves; abscission
 Human and ecological relevance of leaves
 Stems structure and development
 External stem morphology
 Tissue patterns in stems; steles
 Herbaceous and woody dicotyledonous stems
 Monocotyledonous stems
 Specialized stems
 Wood structure, uses and properties
 Root structure and development
 Specialized roots
 Mycorrhizae; root nodules
 Human relevance of roots.
 Flowers, Fruits and Seeds (SLOs 1, 2, 3, 5, 6)
 Differences between dicots and monocots
 Structure and types of flowers and fruits
 Fruit and seed dispersal
 Seed structure, germination, and longevity
 Water in plants (SLOs 1, 2, 5, 6)
 Molecular movement, diffusion, osmosis, imbibition, plasmolysis, active transport
 The Cohesion-Tension Theory; regulation of transpiration; transport of organic molecules
 The Pressure-Flow Hypothesis; mineral requirements for growth; macronutrients and micronutrients
 Transpiration and the water cycle
 Plant metabolism (SLOs 1, 2, 5, 6)
 Enzymes and energy transfer; oxidation-reduction reactions
 Photosynthesis: major steps, C3, C4, and CAM processes
Other significant processes that occur in chloroplasts
Respiration: major steps; factors affecting the rate of respiration
Additional metabolic pathways; assimilation and digestion
Photosynthesis and the carbon cycle
Plant breeding, growth, and propagation (SLOs 1, 2, 5, 6, 7)
Nutrients, vitamins, plants growth regulators
Interactions of plant growth regulators; photoperiod; phytochromes; dormancy.
Crop plant evolution
Plant breeding: using compatible and incompatible germplasm
Seed and asexual propagation

Evolution and Genetics in plants (SLOs 1, 2, 4, 6)
The study of evolutionary biology
Charles Darwin; evidence for evolution
Microevolution and macroevolution
Rates of evolution; allele frequencies
The role of hybridizations in evolution; apomixis; polyploidy
Plant names and classification
Development of the binomial system of nomenclature; Linnaeus
The International Code of Botanical Nomenclature
Development of the kingdom concept; classification of major groups
The species concept; the future of plant classification
Dichotomous keys
Kingdoms Protista (SLOs 1, 3, 4, 5)
Features and classification of photosynthetic protist
Distinctions between protista and plants
Alternation of generations
Human and ecological relevance of algae
Kingdom Fungi (SLO1, 3, 4, 5, 6)
Distinctions between the protista, plants, and fungi
Features and classification of fungal phyla
Human and ecological relevance of fungi
Lichens
Human and ecological relevance of lichens
Bryophytes (SLOs 1, 2, 3, 4, 5, 6)
Structure, form, life cycles, classification, and ecological importance of representative bryophytes.

The Seedless Vascular Plants (SLOs 1, 2, 3, 4, 5, 6)
Structure, form, life cycles, reproduction, and classification of representative seedless vascular plants, including fossils.
Human and ecological relevance of seedless vascular plants
Seed Producing Plants (SLOs 1, 2, 3, 4, 5, 6)
Structure, form, life cycles, development of gametophytes, fertilization, seed development, and classification of representative phyla of gymnosperms.
Human relevance of conifers and other gymnosperms
Structure, form, life cycle, development of gametophytes, fertilization, and development of seeds of representative flowering plants.
Pollination ecology
Herbaria and methods of plant preservation
Trends of specialization and classification of flowering plants
Flowering plants and civilization (SLOs 1, 2, 5, 6)
Origin of selected families of cultivated plants
Ecology and Biomes
Plants and the environment; life histories; natural cycles
Ecological succession; global climate changes; erosion; biodiversity
Impact of humans on plant communities
Restoration biology
Major biomes of North America: tundra; taiga; temperate deciduous forests; grasslands; deserts; mountain and coastal forests; intertidal zone (tide pools), and tropical rain forests.
Possible Field trips: Redwood forest ecosystem; Tide pools organisms survey; Edgewood Park chaparral,
grassland, oak forest study.

Lab Content:
Lab Content
The Biology 220 labs are designed to complement material presented in lectures. Students complete and submit worksheets for each lab.

Lab 1: Introduction to the study of plants and plant structure. (SLOs 1, 7)
Observation of characteristics of a diversity of terrestrial plants and their distinguishing features. Overview of lab procedures.

Lab 2: Plant cells and tissues (SLOs 1, 2, 8)
Observation of fresh samples and prepared microscope slides of plant tissues, and introduction or review of the proper use of the compound microscope.

Labs 3, 4, and 5: Leaves, Stems, and Roots (SLOs 1, 2, 5, 8)
Macroscopic and microscopic observation of leaves, stems, and roots. Study of the distinguishing features of the vegetative organs of Liliopsida, Magnoliopsida, and Gymnosperms. Study of specialized forms of leaves, stems, and roots.

Lab 6: Flowers, Fruits and Seeds (SLOs 1, 2, 3, 5)
Diversity of fleshy and dry fruits; and dehiscent and indehiscent fruits. Study of the variation in flower morphology; fruit morphology; and seed structure and dispersal.

Lab 7: Water relations in plants (SLOs 1, 2, 5, 6, 7)
Study of osmosis; simple diffusion; plasmolysis; imbibition; and transpiration.

Lab 8: Photosynthesis (SLOs 1, 2, 5, 6, 7)
Separation of pigments by chromatography; study of the absorption spectrum of photosynthetic pigments; data collection using spectrophotometers; study of C3, C4, and CAM plants.

Lab 9: Plant Propagation (SLOs 1, 2, 5, 6, 7)
Propagation using seeds, leaf, and stem cuttings. Students maintain notebook with sketches and measurements on the growth and development of germinated seeds and growth of propagated plants; and write and submit a paper following scientific protocol.

Lab 10: Kingdoms Protista (SLOs 1, 3, 4, 5, 7)
Study of the features and classification of photosynthetic Protista; alternation of generations; fresh samples and microscope slides of representative photosynthetic protista. Discussion of human and ecological relevance of photosynthetic protista.

Lab 11: Bryophytes and Seedless Vascular Plants (SLOs 1, 2, 3, 4, 5)
Study of the distinguishing features, life cycles, and classification of bryophytes and seedless vascular plants, using fresh samples and microscope slides of representatives bryophytes and seedless vascular plants.

Lab 12: Seed Producing Plants (SLOs 1, 2, 3, 4, 5)
Study of the distinguishing features, life cycles, and classification of seed producing plants, using fresh samples and microscope slides or representative seed producing plants.

Lab 13 and 14: Field Studies
Field trips to selected locations, including Redwood forest, tide pools, a Botanical Garden, or a local ecological preserve. (SLOs 1, 2, 4, 6)
Study of organisms, populations, and community interactions; ecological roles of organisms; ecological surveys or sampling and distribution of organisms.

TBA Hours Content:
This class has no TBAs.

7. **REPRESENTATIVE METHODS OF INSTRUCTION:**
Typical methods of instruction may include:
 A. Lecture
 B. Lab
 C. Activity
D. Critique
E. Directed Study
F. Discussion
G. Experiments
H. Field Experience
I. Field Trips
J. Guest Speakers
K. Observation and Demonstration
L. Other (Specify): • Lecture accompanied by computerized demonstrations and presentation materials, digital images, animations, simulations, audio and video podcasts, and other supplementary learning materials. • Laboratory work with fresh and preserved plant material, prepared slides, and experiments • Discussions • Field Trips to local parks, botanical gardens, tide pools, and other natural settings suitable for the observation and study of plants • Field Trip written reports; homework reports • Laboratory reports Papers, oral, and poster presentations. • Studies of model organisms for understanding genetics inheritance in plants

8. REPRESENTATIVE ASSIGNMENTS
Representative assignments in this course may include, but are not limited to the following:

Writing Assignments:
Written laboratory assignments clearly record each exercise: theoretical questions, experimental design, procedures, observations, summary and interpretation of results. Assignments evaluate how well results compare to expectations, relate experiments and results to principles studied in lecture. Reports on field data collections and observations. Independent research into selected topics, resulting in written paper, poster and or oral presentations demonstrating critical thinking and reasoning skills.

Reading Assignments:
Reading college level textbook to fully understand lecture and laboratory concepts, illustrate points made in lecture, define terms, and provide examples. Reading appropriate relevant scientific papers.

Other Outside Assignments:
Student complete a paper using scientific protocol, using reliable scientific sources of information, and proper reference citation.

9. REPRESENTATIVE METHODS OF EVALUATION
Representative methods of evaluation may include:
A. Class Participation
B. Class Performance
C. Class Work
D. Exams/Tests
E. Field Trips
F. Group Projects
G. Homework
H. Lab Activities
I. Oral Presentation
J. Papers
K. Portfolios
L. Projects
M. Quizzes
N. Research Projects
O. Simulation
P. Written examination
Q. • lecture exams consisting of multiple-choice questions, fill-in questions, matching, short answer and essay questions. • lab practical examinations • poster and oral presentation illustrating a plant family and its evolutionary features, or a relevant current botanical topic • individual field trip reports; lab reports; homework assignments; and other relevant botanical report.

10. REPRESENTATIVE TEXT(S):
Possible textbooks include:

Origination Date: November 2012
Curriculum Committee Approval Date: February 2017
Effective Term: Fall 2017
Course Originator: Tania Beliz